Zhora_Nikoghosyan2.DVI Mathematical Problems of Computer Science 46, 44{49, 2016. A Common Gener alization of Dir ac's Two T heor ems Ca r le n M. Mo s e s ya n 1 a n d Zh o r a G. N iko g h o s ya n 2;¤ 1 Kh. Abovyan Armenian State University 2 Institute for Informatics and Automation Problems of NAS RA e-mail: mosesyan@list.ru, zhora@ipia.sci.am Abstract A theorem is proved including Dirac's two well-known theorems (1952) as particular cases. Keywords: Hamilton cycle, Longest cycle, Longest path, Minimum degree. 1 . In t r o d u c t io n W e c o n s id e r o n ly u n d ir e c t e d g r a p h s wit h n o lo o p s o r m u lt ip le e d g e s . Fo r a g r a p h G, we u s e n a n d c t o d e n o t e t h e o r d e r a n d t h e c ir c u m fe r e n c e ( t h e o r d e r o f a lo n g e s t c yc le ) o f G. A g r a p h G is h a m ilt o n ia n if G c o n t a in s a H a m ilt o n c yc le , t h a t is a s im p le c yc le C wit h jCj = c = n. A g o o d r e fe r e n c e fo r a n y u n d e ¯ n e d t e r m s is [1 ]. Th e e a r lie s t t wo n o n t r ivia l lo we r b o u n d s fo r t h e c ir c u m fe r e n c e we r e d e ve lo p e d in 1 9 5 2 d u e t o D ir a c [2 ] in t e r m s o f m in im u m d e g r e e ± a n d p - t h e o r d e r o f a lo n g e s t p a t h in G, r e s p e c t ive ly. T heor em A: [2 ]. If G is a 2-connected graph, then c ¸ m in fn; 2 ±g. T heor em B : [2 ]. If G is a 2-connected graph, then c ¸ p 2 p. In t h is p a p e r we p r e s e n t a c o m m o n g e n e r a liz a t io n o f Th e o r e m A a n d Th e o r e m B , in c lu d - in g b o t h ± a n d p in a c o m m o n r e la t io n a s p a r a m e t e r s . T heor em 1: If G is a 2-connected graph, then c ¸ 8 >>>>>>< >>>>>>: p; wh e n p · 2 ±; p ¡ 1 ; wh e n 2 ± + 1 · p · 3 ± ¡ 2 ; q 2 p ¡ 1 0 + ( ± ¡ 7 2 ) 2 + ± + 1 2 ; wh e n p ¸ 3 ± ¡ 1 : S in c e G is 2 -c o n n e c t e d , we h a ve n ¸ 3 . If p · 2 ±, t h e n b y Th e o r e m 1 , c ¸ p, im p lyin g t h a t c = p = n ( G is h a m ilt o n ia n ) a n d c = p > p 2 p. N e xt , if 2 ± + 1 · p · 3 ± ¡ 2 , t h e n b y Th e o r e m 1 , c ¸ p ¡ 1 . S in c e p ¸ 2 ± + 1 ¸ 5 , we h a ve c ¸ p ¡ 1 ¸ 2 ± a n d c ¸ p ¡ 1 > p 2 p. Fin a lly, if p ¸ 3 ± ¡ 1 , t h e n s 2 p ¡ 1 0 + µ ± ¡ 7 2 ¶2 ¸ s 2 ( 3 ± ¡ 1 ) ¡ 1 0 + µ ± ¡ 7 2 ¶2 = ± ¡ 1 2 ; ¤G.G. Nicoghossian (up to 1997) 4 4 C. Mosesyan and Zh. Nikoghosyan 4 5 im p lyin g t h a t c ¸ 2 ± ( b y Th e o r e m 1 ) a n d µ ± + 1 2 ¶ s 2 p ¡ 1 0 + µ ± ¡ 7 2 ¶2 + ±2 ¡ 3 ± + 5 4 ¸ µ ± + 1 2 ¶ µ ± ¡ 1 2 ¶ + ±2 ¡ 3 ± + 5 4 = ( ± ¡ 1 ) ( 2 ± ¡ 1 ) > 0 : Ob s e r vin g t h a t t h e in e qu a lit y µ ± + 1 2 ¶ s 2 p ¡ 1 0 + µ ± ¡ 7 2 ¶2 + ±2 ¡ 3 ± + 5 4 > 0 is e qu iva le n t t o s 2 p ¡ 1 0 + µ ± ¡ 7 2 ¶2 + ± + 1 2 > q 2 p; we c o n c lu d e ( b y Th e o r e m 1 ) t h a t c > p 2 p. Th u s , Th e o r e m 1 yie ld s Th e o r e m A a n d is s t r o n g e r t h a n Th e o r e m B . To s h o w t h a t Th e o r e m 1 is b e s t p o s s ib le in a s e n s e , o b s e r ve ¯ r s t t h a t in g e n e r a l, p ¸ c, t h a t is c = p wh e n p · 2 ±, im p lyin g t h a t t h e b o u n d c ¸ p in Th e o r e m 1 c a n n o t b e r e p la c e d b y c ¸ p + 1 . On t h e o t h e r h a n d , t h e g r a p h K±;±+1, wh e r e p = 2 ± + 1 a n d c = 2 ± = p ¡ 1 s h o ws t h a t t h e c o n d it io n p · 2 ± c a n n o t b e r e la xe d t o p · 2 ± + 1 . In a d d it io n , t h e g r a p h K±;±+1, wh e r e c = p, s h o ws t h a t t h e b o u n d c ¸ p ¡ 1 ( wh e n 2 ± + 1 · p · 3 ± ¡ 2 ) c a n n o t b e r e p la c e d b y c ¸ p. Fu r t h e r , t h e g r a p h K2 + 3 K±¡1, wh e r e n = p = 3 ± ¡ 1 a n d c = 2 ± · p ¡ 2 s h o ws t h a t t h e c o n d it io n p · 3 ± ¡ 2 c a n n o t b e r e la xe d t o p · 3 ± ¡ 1 . Fin a lly, t h e s a m e g r a p h K2 + 3 K±¡1, wh e r e p = 3 ± ¡ 1 a n d c = 2 ± = s 2 p ¡ 1 0 + µ ± ¡ 7 2 ¶2 + ± + 1 2 ; s h o ws t h a t t h e b o u n d q 2 p ¡ 1 0 + ( ± ¡ 7 2 ) 2 + ± + 1 2 in Th e o r e m 1 c a n n o t b e im p r o ve d t o q 2 p ¡ 1 0 + ( ± ¡ 7 2 ) 2 + ± + 1 . Fo r a s p e c ia l c a s e wh e n 2 ± + 1 · p · 3 ± ¡ 2 , we u s e t h e r e s u lt o f Oz e ki a n d Y a m a s h it a [3 ]. T heor em C: [3 ]. L et G be a 2-connected graph. Then either ( i ) c ¸ p ¡ 1 o r ( ii) c ¸ 3 ± ¡ 3 o r ( iii ) · = 2 a n d p ¸ 3 ± ¡ 1 . 2 . N o t a t io n a n d P r e lim in a r ie s Th e s e t o f ve r t ic e s o f a g r a p h G is d e n o t e d b y V ( G ) a n d t h e s e t o f e d g e s - b y E ( G ) . Th e n e ig h b o r h o o d o f a ve r t e x x 2 V ( G ) will b e d e n o t e d b y N ( x ) . W e u s e d( x ) t o d e n o t e jN ( x ) j. P a t h s a n d c yc le s in a g r a p h G a r e c o n s id e r e d a s s u b g r a p h s o f G. If Q is a p a t h o r a c yc le , t h e n t h e o r d e r o f Q, d e n o t e d b y jQj, is jV ( Q ) j. W e wr it e a c yc le Q wit h a g ive n o r ie n t a t io n b y ¡! Q . Fo r x; y 2 V ( Q ) , we d e n o t e b y x¡!Q y t h e s u b p a t h o f Q in t h e c h o s e n d ir e c t io n fr o m x t o y. Fo r x 2 V ( Q) , we d e n o t e t h e h-t h s u c c e s s o r a n d t h e h-t h p r e d e c e s s o r o f x o n ¡!Q b y x+h a n d x¡h, r e s p e c t ive ly. W e a b b r e via t e x+1 a n d x¡1 b y x+ a n d x¡, r e s p e c t ive ly. Fo r 4 6 A Common Generalization of Dirac's Two Theorems U µ V ( Q ) , U + = fu+ju 2 Ug a n d U ¡ = fu¡ju 2 Ug. W e s a y t h a t ve r t e x z1 p r e c e d e s ve r t e x z2 o n ¡! Q if z1, z2 o c c u r o n ¡! Q in t h is o r d e r , a n d in d ic a t e t h is r e la t io n s h ip b y z1 Á z2. W e will wr it e z1 ¹ z2 wh e n e it h e r z1 = z2 o r z1 Á z2. L e t P = x ¡! P y b e a p a t h . A vin e o n P is a s e t fLi = xi ¡! L iyi : 1 · i · mg o f in t e r n a lly-d is jo in t p a t h s s u c h t h a t ( a ) V ( Li ) \ V ( P ) = fxi; yig ( i = 1 ; :::; m) , ( b ) x = x1 Á x2 Á y1 ¹ x3 Á y2 ¹ x4 Á ::: ¹ xm Á ym¡1 Á ym = y o n P . T he Vine Lemma: [4 ]. L et G be a k-connected graph and P a path in G. Then there are k ¡ 1 pairwise-disjoint vines on P . Th e n e xt t h r e e le m m a s a r e c r u c ia l fo r t h e p r o o f o f Th e o r e m 1 . Lemma 1: L et G be a connected graph and P = x ¡! P y a longest path in G. ( i ) If xz; yz¡ 2 E ( G ) for some z 2 V ( x+¡!P y ) , then c = p = n, that is G is hamiltonian. ( ii) If d( x ) + d( y ) ¸ p, then c = p = n. ( iii ) L et yz1; xz2 2 E ( G ) for some z1; z2 2 V ( P ) with x Á z1 Á z2 Á y and jz1 ¡! P z2j ¸ 3 . If xz; yz 62 E ( G) for each z 2 V ( z+1 ¡! P z¡2 ) and d ( x) + d ( y ) ¸ p + 3 ¡ jz1 ¡! P z2j, then c = p. Lemma 2: L et G be a 2-connected graph and fL1; L2; :::; Lmg be a vine on a longest path of G. Then c ¸ 2 p ¡ 1 0 m + 1 + 4 : Lemma 3: L et G be a connected graph and fL1; L2; :::; Lmg be a vine on a longest path P = x ¡! P y of G. Then either c = p or c ¸ d( x ) + d( y ) + m ¡ 2 . 3 . P r o o fs P r oof of Lemma 1: ( i ) L e t xz; yz¡ 2 E ( G ) fo r s o m e z 2 V ( x+¡!P y ) . Th e n c ¸ jxz¡!P yz¡Ã¡P xj = p. If V ( G) = V ( P ) , t h e n c le a r ly c = p. Ot h e r wis e , r e c a llin g t h a t G is c o n n e c t e d , we c a n fo r m a p a t h lo n g e r t h a t P , a c o n t r a d ic t io n . ( ii) L e t d( x ) + d( y ) ¸ p. If xz; yz¡ 2 E ( G) fo r s o m e z 2 V ( x+¡!P y ) , t h e n we c a n a r g u e a s in ( i) . Ot h e r wis e N ( x ) \ N + ( y ) = ;. Ob s e r vin g a ls o t h a t x 62 N ( x) [ N + ( y ) , we g e t p ¸ jN ( x ) j + jN + ( y ) j + jfx1gj = jN ( x) j + jN ( y ) j + 1 = d( x ) + d( y ) + 1 ; c o n t r a d ic t in g t h e h yp o t h e s is . ( iii ) A s s u m e t h e c o n t r a r y, t h a t is c · p ¡ 1 . Th e n b y ( i ) , N ( x ) \ N + ( y ) = ;. Cle a r ly, x 62 N ( x) [ N + ( y ) . Fu r t h e r , b y t h e h yp o t h e s is , V ( z+21 ¡! P z¡2 ) \ ( N ( x ) [ N + ( y ) ) = ;; im p lyin g t h a t p ¸ jfxgj + jN ( x) j + jN + ( y ) j + jV ( z+21 ¡! P z¡2 ) j C. Mosesyan and Zh. Nikoghosyan 4 7 = d( x ) + d( y ) + jz1 ¡! P z2j ¡ 2 ; c o n t r a d ic t in g t h e h yp o t h e s is . Th u s , c = p. L e m m a 1 is p r o ve d . P r oof of Lemma 2: L e t P = x ¡! P y b e a lo n g e s t p a t h in G. P u t Li = xi ¡! L iyi ( i = 1 ; :::; m) ; A1 = x1 ¡! P x2; Am = ym¡1 ¡! P ym; Ai = yi¡1 ¡! P xi+1 ( i = 2 ; 3 ; :::; m ¡ 1 ) ; Bi = xi+1 ¡! P yi ( i = 1 ; :::; m ¡ 1 ) ; jAij ¡ 1 = ai ( i = 1 ; :::; m ) ; jBij ¡ 1 = bi ( i = 1 ; :::; m ¡ 1 ) : B y c o m b in in g a p p r o p r ia t e Li; Ai; Bi, we c a n fo r m t h e fo llo win g c yc le s : Q1 = m[ i=1 Ai [ m[ i=1 Li; Q2 = m¡1[ i=1 Ai [ Bm¡1 [ m¡1[ i=1 Li; Q3 = m[ i=2 Ai [ B1 [ m[ i=2 Li; Ri = Bi [ Ai+1 [ Bi+1 [ Li+1 ( i = 1 ; :::; m ¡ 2 ) : S in c e jLij ¸ 2 ( i = 1 ; :::; m ) , we h a ve c ¸ jQ1j = mX i=1 ai + mX i=1 ( jLij ¡ 1 ) ¸ mX i=1 ai + m; c ¸ jQ2j = bm¡1 + m¡1X i=1 ai + m¡1X i=1 ( jLij ¡ 1 ) ¸ bm¡1 + m¡1X i=1 ai + m ¡ 1 ; c ¸ jQ3j = b1 + mX i=2 ai + mX i=2 ( jLij ¡ 1 ) ¸ b1 + mX i=2 ai + m ¡ 1 ; c ¸ jRij = bi + ai+1 + bi+1 + jLi+1j ¡ 1 ¸ bi + ai+1 + bi+1 + 1 ( i = 1 ; :::; m ¡ 2 ) : B y s u m m in g , we g e t ( m + 1 ) c ¸ à 2 mX i=1 ai + 2 m¡1X i=1 bi ! + 2 m¡1X i=2 ai + 4 m ¡ 4 ¸ 2 à mX i=1 ai + m¡1X i=1 bi + 1 ! + 4 m ¡ 6 = 2 p + 4 m ¡ 6 ; im p lyin g t h a t c ¸ 2 p ¡ 1 0 m + 1 + 4 : L e m m a 2 is p r o ve d . P r oof of Lemma 3: If m = 1 , t h e n xy 2 E ( G ) a n d b y L e m m a 1 ( i ) , c = p. L e t m ¸ 2 . P u t Li = xi ¡! L iyi ( i = 1 ; :::; m ) a n d le t Ai; Bi; ai; bi; Qi 4 8 A Common Generalization of Dirac's two Theorems b e a s d e ¯ n e d in t h e p r o o f o f L e m m a 2 . Case 1: m = 2 . A s s u m e wit h o u t lo s s o f g e n e r a lit y t h a t L1 a n d L2 a r e c h o s e n s o a s t o m in im iz e b1. Th is m e a n s t h a t N ( x ) [ N ( y ) µ V ( A1 [ A2 ) . B y L e m m a 1 ( iii ) , e it h e r c = p o r d( x ) + d( y ) · p + 2 ¡ jz1 ¡! P z2j = p + 1 ¡ b1. If c = p, t h e n we a r e d o n e . L e t d ( x) + d( y ) · p + 1 ¡ b1, t h a t is p ¸ d ( x) + d( y ) + b1 ¡ 1 . Th e n p = a1 + a2 + b1 + 1 ¸ d ( x) + d ( y ) + b1 ¡ 1 , im p lyin g t h a t c ¸ jQ1j = a1 + a2 + 2 ¸ d( x ) + d ( y ) = d( x ) + d( y ) + m ¡ 2 : Case 2: m = 3 . L e t xz1; yz2 2 E ( G ) fo r s o m e z1; z2 2 V ( P ) . If z2 Á z1 t h e n fxz1; yz2g is a vin e c o n s is t in g o f t wo p a t h s ( e d g e s ) a n d we c a n a r g u e a s in Ca s e 1 . Ot h e r wis e we h a ve N ( x ) µ V ( A1 [ A2 ) ; N ( y ) µ V ( A2 [ A3 ) a n d z1 ¹ z2 fo r e a c h z1 2 N ( x) a n d z2 2 N ( y ) . Th e r e fo r e , a1 + a2 + a3 ¸ d( x ) + d( y ) ¡ 2 a n d c ¸ jQ1j = a1 + a2 + a3 + 3 ¸ d( x ) + d( y ) + 1 = d( x ) + d( y ) + m ¡ 2 : Case 3: m ¸ 4 . Ch o o s e fL1; :::; Lmg s o a s t o m in im iz e m. Th e n c le a r ly N ( x ) µ V ( A1 [ A2 ) ; N ( y ) µ V ( Am¡1 [ Am ) a n d z1 Á z2 fo r e a c h z1 2 N ( x ) a n d z2 2 N ( y ) . Ob s e r vin g a ls o t h a t a1 + a2 ¸ d( x ) ¡ 1 ; am¡1 + am ¸ d( y ) ¡ 1 ; we g e t c ¸ jQ1j = mX i=1 ai + m = ( a1 + a2 + am¡1 + am ) + m¡2X i=3 ai + m ¸ d ( x ) + d( y ) ¡ 2 + m¡2X i=3 ai + m ¸ d ( x) + d ( y ) + m ¡ 2 : L e m m a 3 is p r o ve d . P r oof of T heor em 1: L e t P = x ¡! P y b e a lo n g e s t p a t h in G. Case 1: p · 2 ±. If xy 2 E ( G) , t h e n b y L e m m a 1 ( i) , c = p. L e t xy 62 E ( G) . Th e n d( x ) + d ( y ) ¸ 2 ± ¸ p a n d b y L e m m a 1 ( ii) , c = p. Case 2: 2 ± + 1 · p · 3 ± ¡ 2 . If c ¸ 3 ± ¡ 3 , t h e n c ¸ p + 2 ¡ 3 = p ¡ 1 . N e xt , if · = 2 a n d p ¸ 3 ± ¡ 1 , t h e n p ¸ 3 ± ¡ 1 ¸ p + 1 , a c o n t r a d ic t io n . B y Th e o r e m C, c ¸ p ¡ 1 . Case 3: p ¸ 3 ± ¡ 1 . S in c e G is 2 -c o n n e c t e d , t h e r e is a vin e fL1; :::; Lmg o n P . B y L e m m a 3 , m · c ¡ d ( x) ¡ d( y ) + 2 · c ¡ 2 ± + 2 . U s in g L e m m a 2 , we g e t c ¸ 2 p ¡ 1 0 m + 1 + 4 ¸ 2 p ¡ 1 0 c ¡ 2 ± + 3 + 4 ; im p lyin g t h a t c ¸ s 2 p ¡ 1 0 + µ ± ¡ 7 2 ¶2 + ± + 1 2 : Th e o r e m 1 is p r o ve d . C. Mosesyan and Zh. Nikoghosyan 4 9 Refer ences [1 ] J. A . B o n d y a n d U . S . R . Mu r t y, Graph Theory with Applications, Ma c m illa n , L o n d o n a n d E ls e vie r , N e w Y o r k, 1 9 7 6 . [2 ] G. A . D ir a c , \ S o m e t h e o r e m s o n a b s t r a c t g r a p h s " , P roc. L ondon, M ath. Soc., vo l. 2 , p p . 6 9 -8 1 , 1 9 5 2 . [3 ] K . Oz e ki a n d T. Y a m a s h it a , \ L e n g t h o f lo n g e s t c yc le s in a g r a p h wh o s e r e la t ive le n g t h is a t le a s t t wo " , Graphs and Combinatorics, vo l. 2 8 , p p . 8 5 9 -8 6 8 , 2 0 1 2 . [4 ] J. A . B o n d y, B asic Graph Theory: P aths and circuits, H a n d b o o k o f Co m b in a t o r ic s , E ls e vie r , A m s t e r d a m , vo l. 1 ,2 , 1 9 9 0 . Submitted 01.07.2016, accepted 02.11.2016. ¸Çñ³ÏÇ »ñÏáõ ûáñ»ÙÝ»ñÇ ÁݹѳÝñ³óáõÙ Î. Øáë»ëÛ³Ý ¨ Ä. ÜÇÏáÕáëÛ³Ý ²Ù÷á÷áõÙ ²å³óáõóíáõÙ ¿ ÙÇ Ã»áñ»Ù, áñÝ Áݹ·ñÏáõÙ ¿ 1952-ÇÝ ¸Çñ³ÏÇ ÏáÕÙÇó ëï³óí³Í »ñÏáõ ѳÛïÝÇ Ã»áñ»ÙÝ»ñÁ áñå»ë Ù³ëݳíáñ ¹»åù»ñ: Îáîáùåíèå äâóõ òåîðåì Äèðàêà Ê. Ìîñåñÿí è Æ. Íèêîãîñÿàí Àííîòàöèÿ Äîêàçûâàåòñÿ îäíà òåîðåìà, êîòîðàÿ âêëþ÷àåò äâå èçâåñòíûå òåîðåìû Äèðàêà, ïîëó÷åííûå â 1952 ã., êàê ÷àñòíûå ñëó÷àè.