Mathematical Problems of Computer Science 45, 67--76, 2016. On Transitive Closures of Two-dimensional Strongly Positive Arithmetical Sets1 Seda N. Manukian Institute for Informatics and Automation Problems of NAS RA e-mail: zaslav@ipia.sci.am Abstract The notions of positive and strongly positive arithmetical set are considered in ([1]-[3]). It is noted in [3] that the transitive closure of any 2-dimensional strongly positive set is primitive recursive. In this article a more strong statement is proved: the transitive closure of any 2-dimensional strongly positive set is defined by an arithmetical formula in the signature (0, =, <, ๐‘†๐‘†), where ๐‘†๐‘†(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ + 1. Besides, it is proved that the class of two-dimensional strongly positive sets and the class of transitive closures of such sets do not coincide with the class of two-dimensional arithmetical sets expressible by the formulas in the signature (0, = , <, ๐‘†๐‘†). Keywords: Positive, Strongly positive, Arithmetical set, Dimension, Signature. 1. Introduction The notion of strongly positive arithmetical set is defined and investigated in [3]. It is proved in [3] that for any ๐‘›๐‘› โ‰ฅ 3 there exists a 2๐‘›๐‘›-dimensional strongly positive set such that its transitive closure is not recursive. It is noted in [3] (without a proof) that the transitive closure of any 2- dimensional strongly positive set is primitive recursive. Below a stronger statement is proved: the transitive closure of any 2-dimensional strongly positive set can be defined by an arithmetical formula in the signature (0, =, <, ๐‘†๐‘†), where ๐‘†๐‘†(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ + 1(see below, Theorem 1). It is proved also that the class of the mentioned transitive closures does not coincide with the class of sets expressible by arithmetical formulas in the signature (0, =, <, ๐‘†๐‘†). For example, it is proved that 1 This work was supported by State Committee of Science, MESS RA in frame of the research project SCS 15T- 1B238. 67 mailto:zaslav@ipia.sci.am 68 On Transitive Closures of Two-dimensional Strongly Positive Arithmetical Sets the set {(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ)/๐‘ฆ๐‘ฆ = ๐‘ฅ๐‘ฅ + 2} is not strongly positive and cannot be represented as the transitive closure of some strongly positive set (see below, Theorem 2). 2. Main Definitions and Results By ๐‘๐‘ we denote the set of all non-negative integers, ๐‘๐‘ = {0,1,2, โ€ฆ }. By ๐‘๐‘๐‘›๐‘›, where ๐‘›๐‘› โ‰ฅ 1, we denote the set of ๐‘›๐‘›-tuples (๐‘ฅ๐‘ฅ1, ๐‘ฅ๐‘ฅ2, โ€ฆ ๐‘ฅ๐‘ฅ๐‘›๐‘›), where ๐‘ฅ๐‘ฅ๐‘–๐‘– โˆˆ ๐‘๐‘ for 1 โ‰ค ๐‘–๐‘– โ‰ค ๐‘›๐‘›. An ๐‘›๐‘›-dimensional arithmetical set, where ๐‘›๐‘› โ‰ฅ 1, is defined as any subset of ๐‘๐‘๐‘›๐‘›. An ๐‘›๐‘›-dimensional arithmetical predicate is defined as a predicate ๐‘ƒ๐‘ƒ, which is true on some set ๐ด๐ด โŠ† ๐‘๐‘๐‘›๐‘› and false on the set ๐‘๐‘๐‘›๐‘›\๐ด๐ด. If the mentioned relation between ๐ด๐ด and ๐‘ƒ๐‘ƒ takes place, then we say that ๐‘ƒ๐‘ƒ is the representing predicate for ๐ด๐ด, and ๐ด๐ด is the set of truth for ๐‘ƒ๐‘ƒ. The notions of primitive recursive set and recursive set are defined in a usual way (see [4]- [6]). The notion of arithmetical formula on a given signature (on the base of logical operations &,โˆจ, โŠƒ, ยฌ, โˆ€, โˆƒ) is defined in a usual way, ([2]-[6]). We will consider arithmetical formulas in the signatures (0, =, ๐‘†๐‘†) and (0, =, <, ๐‘†๐‘†), where ๐‘†๐‘†(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ + 1 for ๐‘ฅ๐‘ฅ โˆˆ ๐‘๐‘. The deductive systems in the signatures (0, =, ๐‘†๐‘†) and (0, =, <, ๐‘†๐‘†) are defined as in [6]; we will denote these deductive systems correspondingly by DedS and DedL. As it is proved in [6], these deductive systems are complete. We say that the formulas ๐น๐น and ๐บ๐บ in the corresponding signatures are equivalent if the formula (๐น๐น โŠƒ ๐บ๐บ)&(๐บ๐บ โŠƒ ๐น๐น) is deducible in the corresponding deductive system. We will consider the formulas in the mentioned signatures up to their equivalence. The relation โ€œ๐‘›๐‘›-dimesional arithmetical set ๐ด๐ด is defined by an arithmetical formula ๐น๐นโ€ is given in a usual way (see [2]-[6]) (in [2] this relation is called as follows: โ€œ๐‘˜๐‘˜-dimensional arithmetical set ๐ด๐ด is represented (or representable) by a formula ๐น๐น"). The notion of transitive closure ๐ด๐ดโˆ— for an arithmetical set ๐ด๐ด having an even dimension 2๐‘˜๐‘˜ (where ๐‘˜๐‘˜ โ‰ฅ 1) is defined in a usual way (see, for example, [3], [8]). Let us recall that the following statement holds (see [3], lemma 3.4, and [8], p.72): if ๐ด๐ด is a 2๐‘˜๐‘˜-dimensional set, ๐ด๐ด โŠ† ๐‘๐‘2๐‘˜๐‘˜, where ๐‘˜๐‘˜ โ‰ฅ 1, then (๐‘ฅ๐‘ฅ1, ๐‘ฅ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘ฅ๐‘˜๐‘˜, ๐‘ฆ๐‘ฆ1, ๐‘ฆ๐‘ฆ2, โ€ฆ , ๐‘ฆ๐‘ฆ๐‘˜๐‘˜) โˆˆ ๐ด๐ดโˆ— if and only if there exists a sequence (๐‘„๐‘„1, ๐‘„๐‘„2, โ€ฆ , ๐‘„๐‘„๐‘š๐‘š) of ๐‘˜๐‘˜-tuples such that ๐‘š๐‘š โ‰ฅ 2, ๐‘„๐‘„1 = (๐‘ฅ๐‘ฅ1, ๐‘ฅ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘ฅ๐‘˜๐‘˜), ๐‘„๐‘„๐‘š๐‘š = (๐‘ฆ๐‘ฆ1, ๐‘ฆ๐‘ฆ2, โ€ฆ , ๐‘ฆ๐‘ฆ๐‘˜๐‘˜), (๐‘„๐‘„๐‘–๐‘–, ๐‘„๐‘„๐‘–๐‘–+1) โˆˆ ๐ด๐ด for 1 โ‰ค ๐‘–๐‘– โ‰ค ๐‘š๐‘š โˆ’ 1. Below we will say that the sequence (๐‘„๐‘„1, ๐‘„๐‘„2, โ€ฆ , ๐‘„๐‘„๐‘š๐‘š), having the mentioned properties is a sequence establishing the value (๐‘„๐‘„1, ๐‘„๐‘„๐‘š๐‘š) โˆˆ ๐ด๐ดโˆ— of the transitive closure ๐ด๐ดโˆ— (or, shortly, ETC-sequence). In what follows we will consider ETC-secuences only for the case ๐‘˜๐‘˜ = 1. The notion of strongly positive arithmetical set is defined as in [3]. Let us recall that an ๐‘š๐‘š-dimensional arithmetical set, where ๐‘š๐‘š โ‰ฅ 1, is said to be strongly positive if it is defined by an arithmetical formula ๐น๐น which is constructed by logical operators & and โˆจ from subformulas having the forms (๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž) (where ๐‘Ž๐‘Ž is a constant, ๐‘Ž๐‘Ž โˆˆ ๐‘๐‘), ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ, ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ), ยฌ(๐‘ฅ๐‘ฅ = 0), where ๐‘ฅ๐‘ฅ and ๐‘ฆ๐‘ฆ are variables. S. Manukian 69 Theorem 1: The transitive closure of any 2-dimensional strongly positive set can be defined by an arithmetical formula in the signature (0, =, <, ๐‘†๐‘†). Theorem 2: The set {(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ)/ ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘†๐‘†(๐‘ฅ๐‘ฅ))} is not strongly positive and cannot be represented as a transitive closure of some strongly positive set. 3. Proofs of Theorems We consider the properties of 2-dimensional strongly positive sets. Let ๐œ‹๐œ‹ be any set of such kind. By ๐œ‚๐œ‚ we denote the representing predicate for ๐œ‹๐œ‹. Using the definition of strongly positive set we conclude that the predicate ๐œ‚๐œ‚ can be expressed by an arithmetical formula ๐น๐น having the form ๐น๐น1 โˆจ ๐น๐น2 โˆจ โ€ฆ โˆจ ๐น๐น๐‘š๐‘š, where any ๐น๐น๐‘–๐‘– is the conjuction of subformulas having the following forms: ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž, ๐‘ฆ๐‘ฆ = ๐‘๐‘, (where ๐‘Ž๐‘Ž and ๐‘๐‘ are constants, ๐‘Ž๐‘Ž โˆˆ ๐‘๐‘, ๐‘๐‘ โˆˆ ๐‘๐‘), ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ, ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ), ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ), ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0). The predicate expressed by the formula ๐น๐น๐‘–๐‘– we denote by ๐œ‚๐œ‚๐‘–๐‘–; the set of truth for ๐œ‚๐œ‚๐‘–๐‘– we denote by ๐œ‹๐œ‹๐‘–๐‘–. The following equalities hold: ๐œ‚๐œ‚(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โ‰ก ๐œ‚๐œ‚1(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆจ ๐œ‚๐œ‚2(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆจ โ€ฆ โˆจ ๐œ‚๐œ‚๐‘š๐‘š(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ); ๐œ‹๐œ‹ = ๐œ‹๐œ‹1 โˆช ๐œ‹๐œ‹2 โˆช โ€ฆ โˆช ๐œ‹๐œ‹๐‘š๐‘š. Clearly, all the predicates ๐œ‚๐œ‚, ๐œ‚๐œ‚1, ๐œ‚๐œ‚2, โ€ฆ , ๐œ‚๐œ‚๐‘š๐‘š, and all the sets ๐œ‹๐œ‹, ๐œ‹๐œ‹1, ๐œ‹๐œ‹2, โ€ฆ , ๐œ‹๐œ‹๐‘š๐‘š are expressible by arithmetical formulas in the signature (0, =, ๐‘†๐‘†). Let us note that if some ๐น๐น๐‘–๐‘– includes simultaneously some two subformulas of the forms ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ, ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ), ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ), then the corresponding predicate ๐œ‚๐œ‚๐‘–๐‘– is identically false, hence, ๐น๐น๐‘–๐‘– can be deleted from the structure of ๐น๐น, similarly, ๐น๐น๐‘–๐‘– can be deleted from the structure of ๐น๐น if it includes subformulas of the forms ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž1 and ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž2 where ๐‘Ž๐‘Ž1 โ‰  ๐‘Ž๐‘Ž2 or subformulas of the forms ๐‘ฆ๐‘ฆ = ๐‘๐‘1 and ๐‘ฆ๐‘ฆ = ๐‘๐‘2 where ๐‘๐‘1 โ‰  ๐‘๐‘2. Let us consider possible forms of the formula ๐น๐น๐‘–๐‘–. We do not consider the cases mentioned above when ๐น๐น๐‘–๐‘– can be deleted from the structure of ๐น๐น. (Case 1). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž, ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ), and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0). In this case ๐œ‹๐œ‹๐‘–๐‘– is either empty, or contains the single pair (๐‘Ž๐‘Ž, ๐‘Ž๐‘Ž + 1) (for example, ๐œ‹๐œ‹๐‘–๐‘– is empty if ๐น๐น๐‘–๐‘– has the form (๐‘ฅ๐‘ฅ = 0 & ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ)& ยฌ(๐‘ฅ๐‘ฅ = 0))). (Case 2). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฆ๐‘ฆ = ๐‘๐‘, ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ), and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0). In this case ๐œ‹๐œ‹๐‘–๐‘– is either empty or contains the single pair (๐‘๐‘ โˆ’ 1, ๐‘๐‘), where ๐‘๐‘ > 0. (Case 3). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ), and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0) (we suppose that ๐น๐น๐‘–๐‘– contains no subformula having one of the forms ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž, ๐‘ฆ๐‘ฆ = ๐‘๐‘, ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ, ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ)). In this case all pairs of numbers having the form (๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ + 1), where ๐‘ฅ๐‘ฅ > 0, belong to ๐œ‹๐œ‹๐‘–๐‘–. The statement (0,1) โˆˆ ๐œ‹๐œ‹๐‘–๐‘– is true if and only if the subformula ยฌ(๐‘ฅ๐‘ฅ = 0) is not included in ๐น๐น๐‘–๐‘–. (Case 4). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฆ๐‘ฆ = ๐‘๐‘, ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ), and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0). In this case ๐œ‹๐œ‹๐‘–๐‘– is either empty, or contains the single pair (๐‘๐‘ + 1, ๐‘๐‘). (Case 5). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž, ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ), and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0). In this case ๐œ‹๐œ‹๐‘–๐‘– is either empty, or contains the single pair (๐‘Ž๐‘Ž, ๐‘Ž๐‘Ž โˆ’ 1), where ๐‘Ž๐‘Ž > 0. (Case 6). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ), and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0) (we suppose that ๐น๐น๐‘–๐‘– contains no subformulas having one of the forms ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž, ๐‘ฆ๐‘ฆ = ๐‘๐‘, ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ, ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ)). 70 On Transitive Closures of Two-dimensional Strongly Positive Arithmetical Sets In this case all pairs of numbers having the form (๐‘ฅ๐‘ฅ + 1, ๐‘ฅ๐‘ฅ), where ๐‘ฅ๐‘ฅ > 0, belong to ๐œ‹๐œ‹๐‘–๐‘–. The statement (1,0) โˆˆ ๐œ‹๐œ‹๐‘–๐‘– is true if and only if the subformula ยฌ(๐‘ฆ๐‘ฆ = 0) is not included in ๐น๐น๐‘–๐‘–. (Case 7). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž, ๐‘ฆ๐‘ฆ = ๐‘๐‘, and, possibly, ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0). In this case ๐œ‹๐œ‹๐‘–๐‘– is either empty, or contains the single pair (๐‘Ž๐‘Ž, ๐‘๐‘). (Case 8). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž, ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ, and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0). In this case ๐œ‹๐œ‹๐‘–๐‘– is either empty, or contains the single pair (๐‘Ž๐‘Ž, ๐‘Ž๐‘Ž). (Case 9). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฆ๐‘ฆ = ๐‘๐‘, ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ, and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0). In this case ๐œ‹๐œ‹๐‘–๐‘– is either empty, or contains the single pair (๐‘๐‘, ๐‘๐‘). (Case 10). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž, and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0) (we suppose that ๐น๐น๐‘–๐‘– contains no subformulas having one of the forms, ๐‘ฆ๐‘ฆ = ๐‘๐‘, ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ, ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ), ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ)). In this case ๐œ‹๐œ‹๐‘–๐‘– is empty when ๐‘Ž๐‘Ž = 0 and the subformula ยฌ(๐‘ฅ๐‘ฅ = 0) is included in ๐น๐น๐‘–๐‘–. In the opposite case ๐œ‹๐œ‹๐‘–๐‘– contains all pairs (๐‘Ž๐‘Ž, ๐‘ฆ๐‘ฆ), where y> 0. The statement (๐‘Ž๐‘Ž, 0) โˆˆ ๐œ‹๐œ‹๐‘–๐‘– is true (for ๐‘Ž๐‘Ž > 0) if and only if the subformula ยฌ(๐‘ฆ๐‘ฆ = 0) is not included in ๐น๐น๐‘–๐‘–. (Case 11). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฆ๐‘ฆ = ๐‘๐‘, and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0) (we suppose that ๐น๐น๐‘–๐‘– contains no subformulas having one of the forms, x= ๐‘Ž๐‘Ž, ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ, ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ), ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ)). In this case ๐œ‹๐œ‹๐‘–๐‘– is empty when ๐‘๐‘ = 0, and the subformula ยฌ(๐‘ฆ๐‘ฆ = 0) is included in ๐น๐น๐‘–๐‘–. In the opposite case ๐œ‹๐œ‹๐‘–๐‘– contains all pairs (๐‘ฅ๐‘ฅ, ๐‘๐‘), where x> 0. The statement (0, ๐‘๐‘) โˆˆ ๐œ‹๐œ‹๐‘–๐‘– is true (for ๐‘๐‘ โ‰  0) if and only if the subformula ยฌ(๐‘ฅ๐‘ฅ = 0) is not included in ๐น๐น๐‘–๐‘–. (Case 12). ๐น๐น๐‘–๐‘– contains the subformulas ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ, and, possibly, ยฌ(๐‘ฅ๐‘ฅ = 0), ยฌ(๐‘ฆ๐‘ฆ = 0) (we suppose that ๐น๐น๐‘–๐‘– contains no subformulas having one of the forms, x= ๐‘Ž๐‘Ž, y = ๐‘๐‘, ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ), ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ)). In this case ๐œ‹๐œ‹๐‘–๐‘– contains all the pairs having the form (๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ), where x > 0. The statement (0,0) โˆˆ ๐œ‹๐œ‹๐‘–๐‘– is true if and only if the subformulas ยฌ(๐‘ฅ๐‘ฅ = 0) and ยฌ(๐‘ฆ๐‘ฆ = 0) are not included in ๐น๐น๐‘–๐‘–. It is easily seen that all the variants of the structure of ๐œ‹๐œ‹๐‘–๐‘– are exhausted in the cases 1-12. Now we will consider the variants of the structure of ๐œ‹๐œ‹โˆ—. As it is proved in [3] (see [3], Lemma 3.4) the statement (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹โˆ—is true if and only if there exists an ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) such that ๐‘ž๐‘ž1 = ๐‘ฅ๐‘ฅ, ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ = ๐‘ฆ๐‘ฆ, (๐‘ž๐‘ž๐‘–๐‘–, ๐‘ž๐‘ž๐‘–๐‘–+1) โˆˆ ๐œ‹๐œ‹ for 1 โ‰ค ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ. Without loss of generality we may suppose that any considered ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) where ๐‘Ÿ๐‘Ÿ โ‰ฅ 3, satisfies the condition ๐‘ž๐‘ž๐‘–๐‘– โ‰  ๐‘ž๐‘ž๐‘—๐‘— when ๐‘–๐‘– โ‰  ๐‘—๐‘— (otherwise the given ETC-sequence may be replaced by a shorter sequence having the same properties). Let us consider the number ๐‘‘๐‘‘ such that ๐‘‘๐‘‘ = ๐‘‘๐‘‘1 + 1, where ๐‘‘๐‘‘1 is the maximum of the numbers ๐‘Ž๐‘Ž and ๐‘๐‘ in the formulas ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž and ๐‘ฆ๐‘ฆ = ๐‘๐‘ included in ๐น๐น. If no formula of such forms is included in ๐น๐น, then we admit ๐‘‘๐‘‘ = 3. We will use below some classification of pairs (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) such that ๐‘ฅ๐‘ฅ โˆˆ ๐‘๐‘, ๐‘ฆ๐‘ฆ โˆˆ ๐‘๐‘. We say that (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) belongs to the subset ๐‘†๐‘†1 if ๐‘ฅ๐‘ฅ โ‰ค ๐‘‘๐‘‘, ๐‘ฆ๐‘ฆ โ‰ค ๐‘‘๐‘‘. In a similar way we define the subsets ๐‘†๐‘†2, ๐‘†๐‘†3, ๐‘†๐‘†4 as sets of pairs (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) such that (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐‘†๐‘†2 if ๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘, ๐‘ฆ๐‘ฆ โ‰ค ๐‘‘๐‘‘; (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐‘†๐‘†3 if ๐‘ฅ๐‘ฅ โ‰ค ๐‘‘๐‘‘, ๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘; (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐‘†๐‘†4 if ๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘, ๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘. The sets ๐‘†๐‘†1โˆ—, ๐‘†๐‘†2โˆ—, ๐‘†๐‘†3โˆ—, ๐‘†๐‘†4โˆ— are defined coorrespondingly as ๐‘†๐‘†1 โˆฉ ๐œ‹๐œ‹โˆ—, ๐‘†๐‘†2 โˆฉ ๐œ‹๐œ‹โˆ—, ๐‘†๐‘†3 โˆฉ ๐œ‹๐œ‹โˆ—, ๐‘†๐‘†4 โˆฉ ๐œ‹๐œ‹โˆ—. A pair (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) is said to be increasing if ๐‘ฅ๐‘ฅ < ๐‘ฆ๐‘ฆ and decreasing if ๐‘ฅ๐‘ฅ > ๐‘ฆ๐‘ฆ. Lemma 3.1: If the number โ„Ž satisfies the condition โ„Ž โ‰ฅ ๐‘‘๐‘‘, and the pair (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹โˆ— satisfies the conditions ๐‘ฅ๐‘ฅ โ‰ค โ„Ž, ๐‘ฆ๐‘ฆ โ‰ค โ„Ž, then there exists an ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) for the value (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹โˆ— such that ๐‘ž๐‘ž1 = ๐‘ฅ๐‘ฅ, ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ = ๐‘ฆ๐‘ฆ, (๐‘ž๐‘ž๐‘–๐‘–, ๐‘ž๐‘ž๐‘–๐‘–+1) โˆˆ ๐œ‹๐œ‹ for 1 โ‰ค ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ, ๐‘ž๐‘ž๐‘–๐‘– โ‰ค โ„Ž for 1 โ‰ค ๐‘–๐‘– โ‰ค ๐‘Ÿ๐‘Ÿ. S. Manukian 71 Proof: As it follows from the condition (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹โˆ—, there exists an ETC- sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) such that ๐‘ž๐‘ž1 = ๐‘ฅ๐‘ฅ, ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ = ๐‘ฆ๐‘ฆ, (๐‘ž๐‘ž๐‘–๐‘–, ๐‘ž๐‘ž๐‘–๐‘–+1) โˆˆ ๐œ‹๐œ‹ for 1 โ‰ค ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ. If ๐‘ž๐‘ž๐‘–๐‘– โ‰ค โ„Ž for 1 โ‰ค ๐‘–๐‘– โ‰ค ๐‘Ÿ๐‘Ÿ, then the statement of Lemma is satisfied. In the opposite case let ๐‘˜๐‘˜ be the minimal index in the sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) such that ๐‘˜๐‘˜ > 1, ๐‘ž๐‘ž๐‘˜๐‘˜ > โ„Ž. Let ๐‘™๐‘™ be the minimal index such that ๐‘™๐‘™ โ‰ฅ ๐‘˜๐‘˜, ๐‘ž๐‘ž๐‘™๐‘™+1 โ‰ค โ„Ž. Clearly, any number ๐‘ž๐‘ž๐‘—๐‘—, where ๐‘˜๐‘˜ โ‰ค ๐‘—๐‘— โ‰ค ๐‘™๐‘™ satisfies the condition ๐‘ž๐‘ž๐‘—๐‘— > โ„Ž(note that the case ๐‘˜๐‘˜ = ๐‘™๐‘™ is not excluded). The following statements hold: ๐‘ž๐‘ž๐‘˜๐‘˜โˆ’1 โ‰ค โ„Ž, ๐‘ž๐‘ž๐‘™๐‘™+1 โ‰ค โ„Ž, the pair (๐‘ž๐‘ž๐‘˜๐‘˜โˆ’1, ๐‘ž๐‘ž๐‘˜๐‘˜) is increasing, the pair (๐‘ž๐‘ž๐‘™๐‘™, ๐‘ž๐‘ž๐‘™๐‘™+1) is decreasing. But any increasing pair (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹ such that ๐‘ฅ๐‘ฅ โ‰ฅ โ„Ž, ๐‘ฆ๐‘ฆ โ‰ฅ โ„Ž, ๐‘ฅ๐‘ฅ < ๐‘ฆ๐‘ฆ should satisfy the conditions of (Case 3) or (Case 10) mentioned above. Therefore, either ๐‘ž๐‘ž๐‘˜๐‘˜โˆ’1 = โ„Ž, ๐‘ž๐‘ž๐‘˜๐‘˜ = โ„Ž + 1 (Case 3) or ๐‘ž๐‘ž๐‘˜๐‘˜โˆ’1 = ๐‘Ž๐‘Ž, where ๐‘Ž๐‘Ž is the number contained in a formula ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž included in ๐น๐น. Similarly, any decreasing pair (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹ such that ๐‘ฅ๐‘ฅ โ‰ฅ โ„Ž, ๐‘ฆ๐‘ฆ โ‰ฅ โ„Ž, ๐‘ฅ๐‘ฅ > ๐‘ฆ๐‘ฆ, satisfies the conditions of (Case 6) or (Case 11) mentioned above. Therefore either ๐‘ž๐‘ž๐‘™๐‘™ = โ„Ž + 1, ๐‘ž๐‘ž๐‘™๐‘™+1 = โ„Ž (Case 6) or ๐‘ž๐‘ž๐‘™๐‘™+1 = ๐‘๐‘, where ๐‘๐‘ is the number contained in a formula ๐‘ฆ๐‘ฆ = ๐‘๐‘ included in ๐น๐น (Case 11). Now if ๐‘ž๐‘ž๐‘˜๐‘˜โˆ’1 = ๐‘ž๐‘ž๐‘™๐‘™+1 = โ„Ž, ๐‘ž๐‘ž๐‘˜๐‘˜ = ๐‘ž๐‘ž๐‘™๐‘™ = โ„Ž + 1, (Case 3, Case 6) then the segment (๐‘ž๐‘ž๐‘˜๐‘˜โˆ’1, ๐‘ž๐‘ž๐‘˜๐‘˜, ๐‘ž๐‘ž๐‘˜๐‘˜+1, โ€ฆ , ๐‘ž๐‘ž๐‘™๐‘™, ๐‘ž๐‘ž๐‘™๐‘™+1) of the ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) can be replaced by the single number ๐‘ž๐‘ž๐‘˜๐‘˜โˆ’1 = ๐‘ž๐‘ž๐‘™๐‘™+1 = โ„Ž. If ๐‘ž๐‘ž๐‘˜๐‘˜โˆ’1 = ๐‘Ž๐‘Ž, then the mentioned segment can be replaced by the segment (๐‘Ž๐‘Ž, ๐‘ž๐‘ž๐‘™๐‘™+1) (Case 10). If ๐‘ž๐‘ž๐‘™๐‘™+1 = ๐‘๐‘, then the mentioned segment can be replaced by the segment (๐‘ž๐‘ž๐‘˜๐‘˜โˆ’1, ๐‘๐‘) (Case 11). Clearly the sequence obtained by these replacements is an ETC- sequence for the value (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹โˆ—. Transforming in this way any segment of the sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) containing members greater than โ„Ž, we obtain the ETC-sequence satisfying the conditions of Lemma. This completes the proof. Corollary 1: There is only finite number of ETC-sequences obtained by the transformations described in Lemma 3.1. Indeed, the length of such sequence (without repetitions of members) is โ‰ค โ„Ž + 1, and any member of such sequence is โ‰ค โ„Ž. Corollary 2: The set ๐‘†๐‘†1โˆ— can be defined by arithmetical formula in the signature (0, =, <, ๐‘†๐‘†) (even in (0, =, ๐‘†๐‘†)). Indeed, applying Corollary 1 to the case when โ„Ž = ๐‘‘๐‘‘, we conclude that the set of pairs (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) such that ๐‘ฅ๐‘ฅ โ‰ค ๐‘‘๐‘‘, ๐‘ฆ๐‘ฆ โ‰ค ๐‘‘๐‘‘, (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹โˆ— is finite, hence, it can be defined by a formula having the form ๏ฟฝ(๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ1)&(๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ1)๏ฟฝ โˆจ ๏ฟฝ(๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ2)&(๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ2)๏ฟฝ โˆจ โ€ฆ โˆจ ๏ฟฝ(๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘š๐‘š)&(๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ๐‘š๐‘š)๏ฟฝ, where all ๐‘ฅ๐‘ฅ๐‘–๐‘– and ๐‘ฆ๐‘ฆ๐‘–๐‘– are constants. If this set is empty, then it can be defined by the formula (๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ)&(๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ)). Note. If ๐‘ฅ๐‘ฅ โ‰ค ๐‘‘๐‘‘, ๐‘ฆ๐‘ฆ โ‰ค ๐‘‘๐‘‘, then the statement (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹โˆ— may be tested constructively. The method of testing is actually given in Corollary 1. Lemma 3.2: If some pair (๐‘ฅ๐‘ฅ0, ๐‘ฆ๐‘ฆ0), where ๐‘ฅ๐‘ฅ0 > ๐‘‘๐‘‘, ๐‘ฆ๐‘ฆ0 โ‰ค ๐‘‘๐‘‘ belongs to ๐œ‹๐œ‹โˆ—, then any pair (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ0), where ๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘, belongs to ๐œ‹๐œ‹โˆ—. Proof: If some pair (๐‘ฅ๐‘ฅ0, ๐‘ฆ๐‘ฆ0) satisfies the conditions of Lemma, then there exists an ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) such that ๐‘ž๐‘ž1 = ๐‘ฅ๐‘ฅ0, ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ = ๐‘ฆ๐‘ฆ0, (๐‘ž๐‘ž๐‘–๐‘–, ๐‘ž๐‘ž๐‘–๐‘–+1) โˆˆ ๐œ‹๐œ‹ for 1 โ‰ค ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ. Let ๐‘˜๐‘˜ be the minimal index in the sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) such that ๐‘˜๐‘˜ < ๐‘Ÿ๐‘Ÿ, ๐‘ž๐‘ž๐‘˜๐‘˜+1 โ‰ค ๐‘‘๐‘‘ (the case ๐‘˜๐‘˜ = 1 is not excluded). Without loss of generality we may suprose that ๐‘ž๐‘ž๐‘–๐‘– โ‰ค ๐‘‘๐‘‘ for ๐‘˜๐‘˜ + 1 โ‰ค ๐‘–๐‘– โ‰ค ๐‘Ÿ๐‘Ÿ (indeed, in the opposite case the segment (๐‘ž๐‘ž๐‘˜๐‘˜+1, ๐‘ž๐‘ž๐‘˜๐‘˜+2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) can be transformed by the method described in the proof of Lemma 3.1). 72 On Transitive Closures of Two-dimensional Strongly Positive Arithmetical Sets The pair (๐‘ž๐‘ž๐‘˜๐‘˜, ๐‘ž๐‘ž๐‘˜๐‘˜+1) is decreasing, hence, either ๐‘ž๐‘ž๐‘˜๐‘˜+1 = ๐‘๐‘, where ๐‘๐‘ is the number in a formula ๐‘ฆ๐‘ฆ = ๐‘๐‘ included in ๐น๐น, (Case 11 considered above), or ๐‘ž๐‘ž๐‘˜๐‘˜+1 = ๐‘ž๐‘ž๐‘˜๐‘˜ โˆ’ 1 (Case 6 considered above). Now the ETC-sequence for the pair (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ0) where ๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘ is obtained from the sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) as follows: if ๐‘ž๐‘ž๐‘˜๐‘˜+1 = ๐‘๐‘, then the segment (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘˜๐‘˜+1) is replaced by the segment (๐‘ฅ๐‘ฅ, ๐‘ž๐‘ž๐‘˜๐‘˜+1) (see Case 11); if ๐‘ž๐‘ž๐‘˜๐‘˜ = ๐‘ž๐‘ž๐‘˜๐‘˜+1 + 1, then any pair (๐‘ฅ๐‘ฅ + 1, ๐‘ฅ๐‘ฅ), where ๐‘ฅ๐‘ฅ > 0, belongs to ๐œ‹๐œ‹ (see Case 6) hence, we can obtain the required ETC-sequence replacing in the sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) the segment (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘˜๐‘˜+1) by the segment (x, x โ€“ 1, โ€ฆ , ๐‘ž๐‘ž๐‘˜๐‘˜+1 + 1, ๐‘ž๐‘ž๐‘˜๐‘˜+1). It is easily seen that the sequence obtained by the mentioned replacements is an ETC-sequence for the value (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ0) โˆˆ ๐œ‹๐œ‹โˆ—. This complets the proof. Corollary: The set ๐‘†๐‘†2โˆ— can be defined by an arithmetical formula in the signature (0, =, <, ๐‘†๐‘†). Indeed, applying Lemma 3.1 and its corollaries to the case when โ„Ž = ๐‘‘๐‘‘ + 1, we obtain the complete list of pairs (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹โˆ— such that ๐‘ฅ๐‘ฅ โ‰ค ๐‘‘๐‘‘ + 1, ๐‘ฆ๐‘ฆ โ‰ค ๐‘‘๐‘‘ + 1. In particular we obtain the complete list of pairs having the property (๐‘‘๐‘‘ + 1, ๐‘ฆ๐‘ฆ0) โˆˆ ๐‘†๐‘†2โˆ—, where ๐‘ฆ๐‘ฆ0 โ‰ค ๐‘‘๐‘‘. Using Lemma 3.2 we conclude that any pair (๐‘‘๐‘‘ + 1, ๐‘ฆ๐‘ฆ0) โˆˆ ๐‘†๐‘†2โˆ— where ๐‘ฆ๐‘ฆ0 โ‰ค ๐‘‘๐‘‘ generates the set {(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ)/(๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ0)}, contained in ๐‘†๐‘†2โˆ—, so the set ๐‘†๐‘†2โˆ— is the union of sets having this form for all ๐‘ฆ๐‘ฆ0 โ‰ค ๐‘‘๐‘‘ such that (๐‘‘๐‘‘ + 1, ๐‘ฆ๐‘ฆ0) โˆˆ ๐‘†๐‘†2โˆ—. But any set {(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ)/(๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ0)} is defined by the formula (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ0), so the set ๐‘†๐‘†2โˆ— is defined by the disjunction of these formulas. This completes the proof. Lemma 3.3: If some pair (๐‘ฅ๐‘ฅ0, ๐‘ฆ๐‘ฆ0), where ๐‘ฅ๐‘ฅ0 โ‰ค ๐‘‘๐‘‘, ๐‘ฆ๐‘ฆ0 > ๐‘‘๐‘‘, belongs to ๐œ‹๐œ‹โˆ—, then any pair (๐‘ฅ๐‘ฅ0, ๐‘ฆ๐‘ฆ), where ๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘ belongs to ๐œ‹๐œ‹โˆ—. The proof is similar to that of Lemma 3.2. We use the ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) such that ๐‘ž๐‘ž1 = ๐‘ฅ๐‘ฅ0, ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ = ๐‘ฆ๐‘ฆ0, (๐‘ž๐‘ž๐‘–๐‘–, ๐‘ž๐‘ž๐‘–๐‘–+1) โˆˆ ๐œ‹๐œ‹ for 1 โ‰ค ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ. Let ๐‘™๐‘™ be the maximal index in the sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) such that ๐‘ž๐‘ž๐‘™๐‘™ โ‰ค ๐‘‘๐‘‘. Without loss of generality we may suppose that ๐‘ž๐‘ž๐‘–๐‘– โ‰ค ๐‘‘๐‘‘ when 1 โ‰ค ๐‘–๐‘– โ‰ค ๐‘™๐‘™ (otherwise the segment (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘™๐‘™) may be transformed by the method used in the proof of Lemma 3.1). The pair (๐‘ž๐‘ž๐‘™๐‘™, ๐‘ž๐‘ž๐‘™๐‘™+1) is increasing, therefore either ๐‘ž๐‘ž๐‘™๐‘™ = ๐‘Ž๐‘Ž, where ๐‘Ž๐‘Ž is the number in a formula ๐‘ฅ๐‘ฅ = ๐‘Ž๐‘Ž included in ๐น๐น (Case 10) or ๐‘ž๐‘ž๐‘™๐‘™+1 = ๐‘ž๐‘ž๐‘™๐‘™ + 1 (Case 3). The ETC-sequence for establishing the statement (๐‘ฅ๐‘ฅ0, ๐‘ฆ๐‘ฆ) โˆˆ ๐œ‹๐œ‹โˆ— (where ๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘) is obtained from the sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) by the following replasements: either the segment (๐‘ž๐‘ž๐‘™๐‘™, ๐‘ž๐‘ž๐‘™๐‘™+1, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) is replaced by the segment (๐‘Ž๐‘Ž, ๐‘ฆ๐‘ฆ) (Case 10), or this segment is replased by the segment (๐‘ž๐‘ž๐‘™๐‘™, ๐‘ž๐‘ž๐‘™๐‘™ + 1, โ€ฆ , ๐‘ฆ๐‘ฆ โˆ’ 1, ๐‘ฆ๐‘ฆ) (Case 3). This completes the proof. Corollary: The set ๐‘†๐‘†3โˆ— can be defined by an arithmetical formula in the signature (0, =, <, ๐‘†๐‘†). The proof is similar to the proof of corollary of Lemma 3.2. In what follows we will say that a formula having the form ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ), ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ), or ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ is contained in a special way in some ๐น๐น๐‘–๐‘– if this formula is contained in ๐น๐น๐‘–๐‘– and the conditions described correspondingly in (Case 3), (Case 6) or (Case 12) mentioned above are satisfied. Lemma 3.4: If the formula ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ) is contained in a special way in some ๐น๐น๐‘–๐‘– then any pair (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) such that ๐‘ฅ๐‘ฅ < ๐‘ฆ๐‘ฆ, ๐‘ฅ๐‘ฅ > 0, belongs to ๐œ‹๐œ‹โˆ—. Indeed, for establishing this statement it is sufficient to consider the ETC-sequence (๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ + 1, โ€ฆ , ๐‘ฆ๐‘ฆ โˆ’ 1, ๐‘ฆ๐‘ฆ). Lemma 3.5: If the formula ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ) is contained in a special way in some ๐น๐น๐‘–๐‘–, then any pair (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) such that ๐‘ฅ๐‘ฅ > ๐‘ฆ๐‘ฆ, ๐‘ฆ๐‘ฆ > 0 belongs to ๐œ‹๐œ‹โˆ—. S. Manukian 73 For establishing this statement it is sufficient to consider the ETC-sequence (๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ โˆ’ 1, โ€ฆ , ๐‘ฆ๐‘ฆ โˆ’ 1, ๐‘ฆ๐‘ฆ). Lemma 3.6: If the formula ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ) is contained in a special way in some ๐น๐น๐‘–๐‘–, and the formula ๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ) is contained in a special way in some ๐น๐น๐‘—๐‘—, where ๐‘–๐‘– โ‰  ๐‘—๐‘—, then any pair (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ), where ๐‘ฅ๐‘ฅ > 0, ๐‘ฆ๐‘ฆ > 0 belongs to ๐œ‹๐œ‹โˆ—. For establishing this statement it is sufficient to consider the ETC-sequence (๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ + 1, โ€ฆ , ๐‘ง๐‘ง, โ€ฆ , ๐‘ฆ๐‘ฆ โˆ’ 1, ๐‘ฆ๐‘ฆ), where ๐‘ง๐‘ง = max (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) + 1. Lemma 3.7: The set ๐‘†๐‘†4โˆ— can be defined by an arithmetical formula in the signature (0, =, <, ๐‘†๐‘†). Proof: If the set ๐‘†๐‘†4โˆ—is empty, then it is defined, for example, by the formula (๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ)&(๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ)). Otherwise, there exists a pair (๐‘ฅ๐‘ฅ0, ๐‘ฆ๐‘ฆ0) โˆˆ ๐‘†๐‘†4โˆ—, that is ๐‘ฅ๐‘ฅ0 > ๐‘‘๐‘‘, ๐‘ฆ๐‘ฆ0 > ๐‘‘๐‘‘, (๐‘ฅ๐‘ฅ0, ๐‘ฆ๐‘ฆ0) โˆˆ ๐œ‹๐œ‹โˆ—. Hence, there exists an ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) such that ๐‘ž๐‘ž1 = ๐‘ฅ๐‘ฅ0, ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ = ๐‘ฆ๐‘ฆ0, (๐‘ž๐‘ž๐‘–๐‘–, ๐‘ž๐‘ž๐‘–๐‘–+1) โˆˆ ๐œ‹๐œ‹ for 1 โ‰ค ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ. We will distinguish two cases: (๐›ผ๐›ผ) There exists such ๐‘–๐‘– that 1 โ‰ค ๐‘–๐‘– โ‰ค ๐‘Ÿ๐‘Ÿ, ๐‘ž๐‘ž๐‘–๐‘– โ‰ค ๐‘‘๐‘‘. (๐›ฝ๐›ฝ) ๐‘ž๐‘ž๐‘–๐‘– > ๐‘‘๐‘‘ for any ๐‘–๐‘–, where 1 โ‰ค ๐‘–๐‘– โ‰ค ๐‘Ÿ๐‘Ÿ. Let us consider the case (๐›ผ๐›ผ).We denote the number ๐‘ž๐‘ž๐‘–๐‘– such that ๐‘ž๐‘ž๐‘–๐‘– โ‰ค ๐‘‘๐‘‘ by ๐‘ง๐‘ง. The pair (๐‘ฅ๐‘ฅ0, ๐‘ง๐‘ง), where ๐‘ฅ๐‘ฅ0 > ๐‘‘๐‘‘ belongs to ๐œ‹๐œ‹โˆ—, therefore, using Lemma 3.2 we conclude that any pair (๐‘ฅ๐‘ฅ, ๐‘ง๐‘ง), where ๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘, belongs to ๐œ‹๐œ‹โˆ—. The pair (๐‘ง๐‘ง, ๐‘ฆ๐‘ฆ0), where ๐‘ฆ๐‘ฆ0 > ๐‘‘๐‘‘, belongs to ๐œ‹๐œ‹โˆ—, therefore, using Lemma 3.3 we conclude that any pair (๐‘ง๐‘ง, ๐‘ฆ๐‘ฆ), where ๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘ belongs to ๐œ‹๐œ‹โˆ—. Hence, any pair (๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ), where ๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘, ๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘, belongs to ๐œ‹๐œ‹โˆ—. So in the case (๐›ผ๐›ผ) the set ๐‘†๐‘†4โˆ— is defined by the formula (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘). Let us note that similar conclusion concerning the set ๐‘†๐‘†4โˆ— can be made if there exists any ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) such that ๐‘ž๐‘ž1 > ๐‘‘๐‘‘, ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ > ๐‘‘๐‘‘ and ๐‘ž๐‘ž๐‘–๐‘– โ‰ค ๐‘‘๐‘‘ for some ๐‘–๐‘–, 1 < ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ. Now let us consider the case (๐›ฝ๐›ฝ). We will investigate the properties of all ETC-sequences (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) such that ๐‘ž๐‘ž๐‘–๐‘– > ๐‘‘๐‘‘ for 1 โ‰ค ๐‘–๐‘– โ‰ค ๐‘Ÿ๐‘Ÿ, and (๐‘ž๐‘ž๐‘–๐‘–, ๐‘ž๐‘ž๐‘–๐‘–+1) โˆˆ ๐œ‹๐œ‹ for 1 โ‰ค ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ. We distingmish the following subcases: (๐›ฝ๐›ฝ1), (๐›ฝ๐›ฝ2), (๐›ฝ๐›ฝ3), (๐›ฝ๐›ฝ4). (๐›ฝ๐›ฝ1) In some ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) of the mentioned kind there exists an index ๐‘–๐‘– such that 1 โ‰ค ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ, ๐‘ž๐‘ž๐‘–๐‘–+1 = ๐‘ž๐‘ž๐‘–๐‘– + 1, but there is no ETC-sequence of the mentioned kind containing an index ๐‘—๐‘— such that ๐‘ž๐‘ž๐‘—๐‘—+1 = ๐‘ž๐‘ž๐‘—๐‘— โˆ’ 1. (๐›ฝ๐›ฝ2) In some ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) of the mentioned kind there exists an index ๐‘–๐‘– such that 1 โ‰ค ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ, ๐‘ž๐‘ž๐‘–๐‘–+1 = ๐‘ž๐‘ž๐‘–๐‘– โˆ’ 1, but there is no ETC-sequence of the mentioned kind containing an index ๐‘—๐‘— such that ๐‘ž๐‘ž๐‘—๐‘—+1 = ๐‘ž๐‘ž๐‘—๐‘— + 1. (๐›ฝ๐›ฝ3) In some ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘Ÿ๐‘Ÿ) of the mentioned kind there exists an index ๐‘–๐‘– such that 1 โ‰ค ๐‘–๐‘– < ๐‘Ÿ๐‘Ÿ, ๐‘ž๐‘ž๐‘–๐‘–+1 = ๐‘ž๐‘ž๐‘–๐‘– + 1; besides, in some ETC-sequence (๐‘ž๐‘ž1, ๐‘ž๐‘ž2, โ€ฆ , ๐‘ž๐‘ž๐‘ก๐‘ก) of the mentioned kind there exists an index ๐‘—๐‘— such that 1 โ‰ค ๐‘—๐‘— < ๐‘ก๐‘ก, ๐‘ž๐‘ž๐‘—๐‘—+1 = ๐‘ž๐‘ž๐‘—๐‘— โˆ’ 1. (๐›ฝ๐›ฝ4) There is no ETC-sequence of the mentioned kind satisfying the conditions described in the subcases (๐›ฝ๐›ฝ1)-( ๐›ฝ๐›ฝ3). Clearly, the subcase (๐›ฝ๐›ฝ1) takes place if some ๐น๐น๐‘–๐‘– in the structure of ๐น๐น has the form (๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ)), but there is no ๐น๐น๐‘—๐‘— having the form (๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ)). Similarly, the subcase (๐›ฝ๐›ฝ2) takes place if some ๐น๐น๐‘–๐‘– in the structure of ๐น๐น has the form (๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ)), but there is no ๐น๐น๐‘—๐‘— having the form (๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ)). The subcase (๐›ฝ๐›ฝ3) takes place if some ๐น๐น๐‘–๐‘– and ๐น๐น๐‘—๐‘— in the structure of ๐น๐น have the forms, correspondingly 74 On Transitive Closures of Two-dimensional Strongly Positive Arithmetical Sets (๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ)) and (๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ)). The subcase (๐›ฝ๐›ฝ4) takes place if the formula ๐น๐น contains no ๐น๐น๐‘–๐‘– having one of the mentioned forms. It is easily seen that in the subcase (๐›ฝ๐›ฝ1) the set ๐‘†๐‘†4โˆ— is defined by the formula (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฅ๐‘ฅ < ๐‘ฆ๐‘ฆ) or by the formula (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฅ๐‘ฅ โ‰ค ๐‘ฆ๐‘ฆ) (see Lemma 3.4). In the subcase (๐›ฝ๐›ฝ2) the set ๐‘†๐‘†4โˆ— is defined by the formula (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฅ๐‘ฅ > ๐‘ฆ๐‘ฆ) or by the formula (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฅ๐‘ฅ โ‰ฅ ๐‘ฆ๐‘ฆ) (see Lemma 3.5). Let us note that the inequalities ๐‘ฅ๐‘ฅ โ‰ค ๐‘ฆ๐‘ฆ and ๐‘ฅ๐‘ฅ โ‰ฅ ๐‘ฆ๐‘ฆ are obtained in the subcases (๐›ฝ๐›ฝ1) and (๐›ฝ๐›ฝ2) if some ๐น๐น๐‘–๐‘– in the structure of ๐น๐น has the form ๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ (see Case 12 mentioned above). In the subcase (๐›ฝ๐›ฝ3) the set ๐‘†๐‘†4โˆ— is defined by the formula (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘) (see Lemma 3.6). In the subcase (๐›ฝ๐›ฝ4) the set ๐‘†๐‘†4โˆ— is either empty or is defined by the formula (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ). This completes the proof. Proof of Theorem 1. As it is established in Lemmas 3.1-3.7, the sets ๐‘†๐‘†1โˆ—, ๐‘†๐‘†2โˆ—, ๐‘†๐‘†3โˆ—, ๐‘†๐‘†4โˆ—, are defined by formulas in the signature {0, =, <, ๐‘†๐‘†}. Hence, the set ๐œ‹๐œ‹โˆ— = ๐‘†๐‘†1โˆ— โˆช ๐‘†๐‘†2โˆ— โˆช ๐‘†๐‘†3โˆ— โˆช ๐‘†๐‘†4โˆ— is defined by the disjunction of the mentioned formulas. This completes the proof. Proof of Theorem 2. Let ๐ด๐ด be the set {(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ)/๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘†๐‘†(๐‘ฅ๐‘ฅ))}, let ๐ต๐ต be any 2-dimensional strongly positive set, let ๐ต๐ตโˆ— be the transitive closure of ๐ต๐ต. We define the number ๐‘‘๐‘‘ for the set ๐ต๐ต by the method given above. By ๐ท๐ท we denote the set {(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ)/(๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)}. Using Lemma 3.7 we conclude that the set ๐ต๐ตโˆ— โˆฉ ๐ท๐ท either is empty or is defined by one of the following formulas: (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฅ๐‘ฅ > ๐‘ฆ๐‘ฆ), (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฅ๐‘ฅ < ๐‘ฆ๐‘ฆ), (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ), or by the disjunction of some of these formulas. Similarly, using Lemmas 3.4-3.6 we conclude that the set ๐ต๐ต โˆฉ ๐ท๐ท either is empty or is defined by one of the following formulas: (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘ฅ๐‘ฅ)), (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฅ๐‘ฅ = ๐‘†๐‘†(๐‘ฆ๐‘ฆ)), (๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘)&(๐‘ฆ๐‘ฆ > ๐‘‘๐‘‘)&(๐‘ฅ๐‘ฅ = ๐‘ฆ๐‘ฆ), or by the disjuction of some of these formulas. Therefore, in all the cases the set ๐ด๐ด โˆฉ ๐ท๐ท is different form ๐ต๐ต โˆฉ ๐ท๐ท and ๐ต๐ตโˆ— โˆฉ ๐ท๐ท. Hence, ๐ด๐ด โ‰  ๐ต๐ต and ๐ด๐ด โ‰  ๐ต๐ตโˆ—. This completes the proof. Note 1. The statement of Theorem 2 is true also for any set defined by the formula ๐‘ฆ๐‘ฆ = ๐‘†๐‘†(๐‘†๐‘† โ€ฆ ๐‘†๐‘†(๐‘ฅ๐‘ฅ) โ€ฆ ), where the symbol ๐‘†๐‘† is repeated ๐‘›๐‘› โ‰ฅ 2 times. The proof is similar to that of Theorem 2. Note 2. Obviously, any set defined by a formula in the signature (0, =, <, ๐‘†๐‘†) is primitive recursive, however, the reverse is not true (for example, the set of even numbers is primitive recurcive, but it cannot be defined by arithmetical formula in the signature (0, =, <, ๐‘†๐‘†) (see [6])). So the statement of Theorem 1 is stronger than the statement of Theorem 2 in [3]. References [1] S. N. Manukian, โ€œOn the representation of recursively enumerable sets in weak arithmeticsโ€, Transactions of the IIAP of NAS of RA, Mathematical Problems of Computer Science, vol. 27, pp. 90-110, 2006. [2] S. N. Manukian, โ€œOn an Algebraic Classification of Multidimensional Recursively Enumerable Sets Expressible in Formal Arithmetical Systemsโ€, Transactions of the IIAP of NAS of RA, Mathematical Problems of Computer Science, vol. 41, pp. 103-113, 20014. S. Manukian 75 [3] S. N.Manukian, โ€œOn strongly positive multidimensional arithmetical setsโ€, Transactions of the IIAP of NAS of RA, Mathematical Problems of Computer Science, vol. 43, pp. 32- 41, 2015. [4] S. C. Kleene, Introduction to Metamathematics, D.Van Nostrand Comp., Inc., New York โ€“ Toronto, 1952. [5] E. Mendelson, Introduction to Mathematical Logic, D.Van Nostrand Comp., Inc., Princeton โ€“ Toronto โ€“ New York โ€“ London, 1964. [6] H. B. Enderton, A Mathematical Introduction to Logic, 2nd edition, San Diego, Harcourt, Academic Press, 2001. [7] G. S. Tseytin, โ€œOne method of representation for the theory of algorithms and enumerable setsโ€, Transactions of Steklov Institute of the Acad. Sci. USSR (in Russian), vol. 72, pp. 69- 98, 1964. [8] A. I. Maltsev, Algorithms and Recursive Functions, 2nd edition (in Russian), M.,โ€Naukaโ€, 1986. Submitted 04.10.2015, accepted 15.01.2016 ิฝีซีฝีฟ ีบีธีฆีซีฟีซีพ ีฅึ€ีฏีนีกึƒ ีฉีพีกีขีกีถีกีฏีกีถ ีขีกีฆีดีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีซ ีฟึ€ีกีถีฆีซีฟีซีพ ึƒีกีฏีธึ‚ีดีถีฅึ€ีซ ีดีกีฝีซีถ ี. ี„ีกีถีธึ‚ีฏีตีกีถ ิฑีดึƒีธึƒีธึ‚ีด ีŠีธีฆีซีฟีซีพ ึ‡ ีญีซีฝีฟ ีบีธีฆีซีฟีซีพ ีฉีพีกีขีกีถีกีฏีกีถ ีขีกีฆีดีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีซ ีฃีกีฒีกึƒีกึ€ีถีฅึ€ีจ ีฝีกีฐีดีกีถีพีกีฎ ีฅีถ [1]-[3] ีฐีธีคีพีกีฎีถีฅึ€ีธึ‚ีด: [3] ีฐีธีคีพีกีฎีธึ‚ีด ีถีทีพีกีฎ ีง, ีธึ€ ึีกีถีฏีกึีกีฎ ีฅึ€ีฏีนีกึƒ ีญีซีฝีฟ ีบีธีฆีซีฟีซีพ ีขีกีฆีดีธึ‚ีฉีตีกีถ ีฟึ€ีกีถีฆีซีฟีซีพ ึƒีกีฏีธึ‚ีดีจ ีบีกึ€ีฆีกีฃีธึ‚ีตีถ ีกีถีคึ€ีกีคีกึ€ีฑ ีง: ิฑีตีฝ ีฐีธีคีพีกีฎีธึ‚ีด ีกีบีกึีธึ‚ึีพีธึ‚ีด ีง ีกีพีฅีฌีซ ีธึ‚ีชีฅีฒ ีบีถีคีธึ‚ีด, ีกีตีฝีซีถึ„ีถี ึีกีถีฏีกึีกีฎ ีฅึ€ีฏีนีกึƒ ีญีซีฝีฟ ีบีธีฆีซีฟีซีพ ีขีกีฆีดีธึ‚ีฉีตีกีถ ีฟึ€ีกีถีฆีซีฟีซีพ ึƒีกีฏีธึ‚ีดีจ ีถีฏีกึ€ีกีฃึ€ีพีธึ‚ีด ีง ีฉีพีกีขีกีถีกีฏีกีถ ีขีกีถีกีฑึ‡ีซ ีดีซีปีธึีธีพ (0, =, <, ๐‘†๐‘†) ีฝีซีฃีถีกีฟีธึ‚ึ€ีกีตีธึ‚ีด (ีธึ€ีฟีฅีฒ ๐‘†๐‘†(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ + 1): ิฒีกึีซ ีคึ€ีกีถีซึ ีกีบีกึีธึ‚ึีพีธึ‚ีด ีง, ีธึ€ ีฅึ€ีฏีนีกึƒ ีญีซีฝีฟ ีบีธีฆีซีฟีซีพ ีขีกีฆีดีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีซ ีคีกีฝีจ ึ‡ ีกีตีค ีขีกีฆีดีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีซ ีฟึ€ีกีถีฆีซีฟีซีพ ึƒีกีฏีธึ‚ีดีถีฅึ€ีซ ีคีกีฝีจ ีนีฅีถ ีฐีกีดีจีถีฏีถีธึ‚ีด (0, =, <, ๐‘†๐‘†) ีฝีซีฃีถีกีฟีธึ‚ึ€ีกีตีธึ‚ีด ีกึ€ีฟีกีฐีกีตีฟีพีธีฒ ีฉีพีกีขีกีถีกีฏีกีถ ีขีกีฆีดีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีซ ีคีกีฝีซ ีฐีฅีฟ: 76 On Transitive Closures of Two-dimensional Strongly Positive Arithmetical Sets ะž ั‚ั€ะฐะฝะทะธั‚ะธะฒะฝั‹ั… ะทะฐะผั‹ะบะฐะฝะธัั… ัั‚ั€ะพะณะพ ะฟะพะทะธั‚ะธะฒะฝั‹ั… ะฐั€ะธั„ะผะตั‚ะธั‡ะตัะบะธั… ะผะฝะพะถะตัั‚ะฒ ั€ะฐะทะผะตั€ะฝะพัั‚ะธ 2 ะก. ะœะฐะฝัƒะบัะฝ ะะฝะฝะพั‚ะฐั†ะธั ะŸะพะฝัั‚ะธั ะฟะพะทะธั‚ะธะฒะฝะพะณะพ ะธ ัั‚ั€ะพะณะพ ะฟะพะทะธั‚ะธะฒะฝะพะณะพ ะผะฝะพะถะตัั‚ะฒะฐ ั€ะฐััะผะฐั‚ั€ะธะฒะฐัŽั‚ัั ะฒ [1]-[3]. ะ’ [3] ัƒะบะฐะทะฐะฝะพ, ั‡ั‚ะพ ั‚ั€ะฐะฝะทะธั‚ะธะฒะฝะพะต ะทะฐะผั‹ะบะฐะฝะธะต ะฒััะบะพะณะพ ัั‚ั€ะพะณะพ ะฟะพะทะธั‚ะธะฒะฝะพะณะพ ะผะฝะพะถะตัั‚ะฒะฐ ั€ะฐะทะผะตั€ะฝะพัั‚ะธ 2 ะฟั€ะธะผะธั‚ะธะฒะฝะพ ั€ะตะบัƒั€ัะธะฒะฝะพ. ะ’ ัั‚ะพะน ัั‚ะฐั‚ัŒะต ะดะพะบะฐะทั‹ะฒะฐะตั‚ัั ะฑะพะปะตะต ัะธะปัŒะฝะพะต ัƒั‚ะฒะตั€ะถะดะตะฝะธะต: ั‚ั€ะฐะฝะทะธั‚ะธะฒะฝะพะต ะทะฐะผั‹ะบะฐะฝะธะต ะฒััะบะพะณะพ ัั‚ั€ะพะณะพ ะฟะพะทะธั‚ะธะฒะฝะพะณะพ ะผะฝะพะถะตัั‚ะฒะฐ ั€ะฐะทะผะตั€ะฝะพัั‚ะธ 2 ะทะฐะดะฐะตั‚ัั ะฐั€ะธั„ะผะตั‚ะธั‡ะตัะบะพะน ั„ะพั€ะผัƒะปะพะน ะฒ ัะธะณะฝะฐั‚ัƒั€ะต (0, =, <, ๐‘†๐‘†), ะณะดะต ๐‘†๐‘†(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ + 1. ะ”ะพะบะฐะทั‹ะฒะฐะตั‚ัั ั‚ะฐะบะถะต, ั‡ั‚ะพ ะบะปะฐัั ัั‚ั€ะพะณะพ ะฟะพะทะธั‚ะธะฒะฝั‹ั… ะผะฝะพะถะตัั‚ะฒ ั€ะฐะทะผะตั€ะฝะพัั‚ะธ 2 ะธ ะบะปะฐัั ั‚ั€ะฐะฝะทะธั‚ะธะฒะฝั‹ั… ะทะฐะผั‹ะบะฐะฝะธะน ั‚ะฐะบะธั… ะผะฝะพะถะตัั‚ะฒ ะฝะต ัะพะฒะฟะฐะดะฐัŽั‚ ั ะบะปะฐััะพะผ ะฐั€ะธั„ะผะตั‚ะธั‡ะตัะบะธั… ะผะฝะพะถะตัั‚ะฒ ั€ะฐะทะผะตั€ะฝะพัั‚ะธ 2, ะทะฐะดะฐะฒะฐะตะผั‹ั… ะฟะพัั€ะตะดัั‚ะฒะพะผ ะฐั€ะธั„ะผะตั‚ะธั‡ะตัะบะธั… ั„ะพั€ะผัƒะป ะฒ ัะธะณะฝะฐั‚ัƒั€ะต (0, =, <, ๐‘†๐‘†).