Mathematical Problems of Computer Science 45, 127--137, 2016. Linear Cryptanalysis of SAFER-256 Knarik M. Kyuregyan Institute for Informatics and Automation Problems of NAS RA e-mail: knarikyuregyan@gmail.com Abstract In this paper linear cryptanalysis of 256-bit block cipher SAFER- 256 is presented. SAFER-256 is secure against differential cryptanalysis after 5 rounds. Keywords: Linear cryptanalysis. 1. Introduction In paper [1] the detailed construction and security analysis against differential analysis of block cipher SAFER-256 is introduced. In this paper the result of linear cryptanalysis [2] of SAFER-256 is presented. We follow the terminology and notation in [2]. The round function is applied to 256 bit plaintext X = X1X2 โ€ฆ X32 with 6 times. The round function consists of the following four layers: 1. XOR/ADD, the first round key is โ€œaddedโ€ to the round input. Bytes 1,2,3,4,9,10,11,12,17,18,19,20,25,26,27,28 are added together bit-by-bit modulo 2 ( XOR) bytes 5,6,7,8,13,14,15,16,21,22,23,24,29,30,31,32 are added together modulo 256 (ADD): U = XOR/ADD(X, K2iโˆ’1). 2. Non-Linear (NL), where the values of bytes 1,2,3,4,9,10,11,12,17,18,19,20,25,26,27,28 are converted to 45xmodulo257 (with the convention that 45128 is represented as 0) and the values of bytes 5,6,7,8,13,14,15,16,21,22,23,24,29,30,31,32 are converted to log45x (with the convention that the output log450 is represented by 128): V = NL(U). 3. ADD/XOR, by this layer the second round key is inserted. The round key bytes 1,2,3,4,9,10,11,12,17,18,19,20,25,26,27,28 are added to the corresponding output bytes of linear layer modulo 256 (ADD) while the round key bytes 5,6,7,8,13, 14,15,16,21, 22,23,24, 29,30,31,32 are added to the corresponding output bytes of linear layer modulo 2 ( XOR): W = ADD/XOR(V, K2i). 4. Invertible Linear Transform or Pseudo-Hadamard Transform (PHT) consisting of four times applied ๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด๐ด ๐‘ ๐‘ โ„Ž๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐ด๐ด and four times applied eight 2-PHT boxes: Y = PHT(W), is equivalent to Y = WM, where M is called an invertible linear transformation matrix of SAFER- 256 introduced in Fig 1. 127 mailto:knarikyuregyan@gmail.com Linear Cryptanalysis of SAFER-256 128 Fi g. 1 . I nv er tib le li ne ar tr an sf or m at io n m at ri x of S A FE R -2 56 .. K. Kyuregyan 129 2. Linear Cryptanalysis of SAFER-256 We will find effective homomorphic I/O sums to a cascade of half-rounds of SAFER-256. At first we find all binary-valued homomorphisms for ADD/XOR and for XOR/ADD. There are 28 โˆ’ 1 binary-valued homomorphisms for 8 bit XOR, namely the functions defined as ๐‘ข๐‘ข๐‘Ž๐‘Ž2(๐‘‰๐‘‰2) โˆถ= ๐ด๐ด2 โˆ˜ ๐‘‰๐‘‰2, where ๐ด๐ด2 is a non-zero binary 8-tuple " โˆ˜ " operation denotes the modulo two โ€œdot productโ€. There is only one binary-valued homomorphism for modulo 256 addition, namely the function ๐‘ข๐‘ข๐‘Ž๐‘Ž1 where ๐ด๐ด1 = 0000 0001 = 01 (hex notation of byte). Hence, there exist 2144 โˆ’ 1 balanced homomorphisms for ADD/XOR, namely the functions ๐‘ข๐‘ข๐‘Ž๐‘Ž defined as ๐‘ข๐‘ข๐‘Ž๐‘Ž(๐‘‰๐‘‰) = ๐ด๐ด โˆ˜ ๐‘‰๐‘‰ where ๐ด๐ด lies in the set of 256-tuples. ๐’œ๐’œ = {๐ด๐ด: ๐ด๐ด โˆˆ {0,1}256\{00}; ๐ด๐ด1, ๐ด๐ด2, ๐ด๐ด3, ๐ด๐ด4, ๐ด๐ด9, ๐ด๐ด10, ๐ด๐ด11, ๐ด๐ด12, ๐ด๐ด17, ๐ด๐ด18, ๐ด๐ด19, ๐ด๐ด20, ๐ด๐ด25, ๐ด๐ด26, ๐ด๐ด27, ๐ด๐ด28} โˆˆ {00, 01}}. Similarly, there are 2144 โˆ’ 1 balanced homomorphism for XOR/ADD, namely the functions ๐‘ข๐‘ข๐‘๐‘(๐‘‰๐‘‰) = ๐‘๐‘ โˆ— ๐‘‰๐‘‰, where ๐‘๐‘ lies in the set โ„ฌ = {๐‘๐‘: ๐‘๐‘ โˆˆ {0,1}256\{00}; ๐‘๐‘5, ๐‘๐‘6, ๐‘๐‘7, ๐‘๐‘8, ๐‘๐‘13, ๐‘๐‘14, ๐‘๐‘15, ๐‘๐‘16, ๐‘๐‘21, ๐‘๐‘22, ๐‘๐‘23, ๐‘๐‘24, ๐‘๐‘29, ๐‘๐‘30, ๐‘๐‘31, ๐‘๐‘32} โˆˆ {00, 01}}. The set of all homomorphic functions for XOR/ADD and the set of all homomorphic functions for ADD/XOR are subsets of the set of all linear binary-valued functions. At first we consider the part of round (half-round) containing the PHT function. The following lemma specifies all homomorphic I/O sums that have non-zero imbalance. The input function must be balanced and homomorphic for ADD/XOR; the output function must be balanced and homomorphic for XOR/ ADD. There are (2144 โˆ’ 1)2 such I/O sums, namely S๐‘Ž๐‘Ž,๐‘๐‘ PHTโˆ’hr โˆถ= ๐‘ข๐‘ข๐‘Ž๐‘Ž(V)โจ๐‘ข๐‘ข๐‘๐‘(Y) ๐ด๐ด โˆˆ ๐’œ๐’œ , ๐‘๐‘ โˆˆ โ„ฌ. Lemma 1: For the ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ-half-round, the only homomorphic I/O sums that have non-zero imbalance are the 232 โˆ’ 1 guaranteed I/O sums obtained by ๐‘‹๐‘‹๐‘‹๐‘‹๐‘‹๐‘‹-ing together any positive number of the 32 guaranteed I/O sums listed in Table 1. Since ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ PHTโˆ’hr|๐‘˜๐‘˜2๐‘–๐‘–๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ PHT๏ฟฝ for any ๐‘˜๐‘˜2๐‘–๐‘– โˆˆ {0,1}256, where ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ PHT โˆถ= ๐‘ข๐‘ข๐‘Ž๐‘Ž(๐‘Š๐‘Š)โจ ๐‘ข๐‘ข๐‘๐‘(๐‘Œ๐‘Œ), (๐ด๐ด โˆˆ ๐’œ๐’œ and ๐‘๐‘ โˆˆ โ„ฌ) is an I/O sum for the PHT function alone, we will look for I/O sums ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ PHT with non-zero imbalance instead of looking for ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ PHTโˆ’hr with non-zero imbalance. So, our main purpose is to find ๐ด๐ด โˆˆ ๐’œ๐’œ and ๐‘๐‘ โˆˆ โ„ฌ such that ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ PHT sum has the form ๐‘Š๐‘Š๐›ผ๐›ผโจ๐œ™๐œ™(๐‘Š๐‘Š256, โ€ฆ , ๐‘Š๐‘Š๐›ผ๐›ผ+1, ๐‘Š๐‘Š๐›ผ๐›ผโˆ’1, โ€ฆ , ๐‘Š๐‘Š0) for some input bit ๐‘Š๐‘Š๐›ผ๐›ผ, since this implies that the I/O sum imbalance is 0. First we consider PHT function. Table 2 shows three kind of dependences for some input and output bits. By using Table 2 we can iteratively show that I/O sums ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ PHT with none-zero imbalance cannot contain any of the output bits ๐‘Œ๐‘Œ๐ด๐ด๐‘—๐‘—, where ๐ด๐ด = 1,2,3,4,9,10,11,12,17,18,19,20,25,26,27,28 and ๐‘—๐‘— = 1,2,3,4,5,6,7. Finally, we consider the 232 โˆ’ 1 balanced output functions obtained as linear combinations of the remaining 32 output bits that might occur if ๐‘๐‘ โˆˆ โ„ฌ. For each of these output functions, we found all input functions such that ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ PHT doesnโ€™t depend linearly on any input bit. It is easy to show that ๏ฟฝ(๐ด๐ด, ๐‘๐‘); ๐ด๐ด, ๐‘๐‘ โˆˆ {0,1}256, ๐ผ๐ผ๏ฟฝS๐‘Ž๐‘Ž,๐‘๐‘ PHT๏ฟฝ = 1๏ฟฝ is a subgroup of (๐’œ๐’œ ร— โ„ฌ, โจ256bits). (In fact if ๐ผ๐ผ๏ฟฝS๐‘Ž๐‘Ž,๐‘๐‘ PHT๏ฟฝ = 1 and ๐ผ๐ผ๏ฟฝS๐‘Ž๐‘Žโ€ฒ,๐‘๐‘โ€ฒ PHT ๏ฟฝ = 1 for some 256 tuples ๐ด๐ดโ€ฒ and ๐‘๐‘โ€ฒ, then ๐ผ๐ผ๏ฟฝS๐‘Ž๐‘Žโจ๐‘Ž๐‘Žโ€ฒ,๐‘๐‘โจ๐‘๐‘โ€ฒ PHT ๏ฟฝ = ๐ผ๐ผ๏ฟฝS๐‘Ž๐‘Ž,๐‘๐‘ PHTโจS๐‘Ž๐‘Žโ€ฒ,๐‘๐‘โ€ฒ PHT ๏ฟฝ = ๐ผ๐ผ๏ฟฝS๐‘Ž๐‘Ž,๐‘๐‘ PHT๏ฟฝ โˆ™ ๐ผ๐ผ๏ฟฝS๐‘Ž๐‘Žโ€ฒ,๐‘๐‘โ€ฒ PHT ๏ฟฝ = 1 as well, whch shows that ๐’œ๐’œ ร— โ„ฌ is closed under "โจ".) Thus, we obtain all I/O sums with non-zero imbalance, as is done in the statement of the lemma. Linear Cryptanalysis of SAFER-256 130 Table 1. Effective I/O sums for the PHT-function. (๐ด๐ด, ๐‘๐‘) ๐‘ข๐‘ข๐‘๐‘(๐‘Œ๐‘Œ) ๐‘ข๐‘ข๐‘Ž๐‘Ž(๐‘Š๐‘Š) ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ PHT๏ฟฝ (00000000000110011001000010010001, 10000000000000000000000000000000) ๐‘Œ๐‘Œ10 ๐‘Š๐‘Š120โจ๐‘Š๐‘Š130โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š170โจ๐‘Š๐‘Š200โจ๐‘Š๐‘Š250โจ๐‘Š๐‘Š280โจ๐‘Š๐‘Š320 1 (00000000000110011111000011110101, 01000000000000000000000000000000) ๐‘Œ๐‘Œ20 ๐‘Š๐‘Š120โจ๐‘Š๐‘Š130โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š170โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š190โจ๐‘Š๐‘Š200โจ ๐‘Š๐‘Š250โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š270โจ๐‘Š๐‘Š280โจ๐‘Š๐‘Š300โจ๐‘Š๐‘Š320 1 (10010001100100000001100100000000, 00100000000000000000000000000000) ๐‘Œ๐‘Œ30 ๐‘Š๐‘Š10โจ๐‘Š๐‘Š40โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š90โจ๐‘Š๐‘Š120โจ๐‘Š๐‘Š200โจ๐‘Š๐‘Š210โจ๐‘Š๐‘Š240 1 (10010001100100000001111101000110, 00010000000000000000000000000000) ๐‘Œ๐‘Œ40 ๐‘Š๐‘Š10โจ๐‘Š๐‘Š40โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š90โจ๐‘Š๐‘Š120โจ๐‘Š๐‘Š200โจ๐‘Š๐‘Š210โจ ๐‘Š๐‘Š220โจ๐‘Š๐‘Š230โจ๐‘Š๐‘Š240โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š300โจ๐‘Š๐‘Š310 1 (00011001000000001001000110010000, 00001000000000000000000000000000) ๐‘Œ๐‘Œ50 ๐‘Š๐‘Š40โจ๐‘Š๐‘Š50โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š170โจ๐‘Š๐‘Š200โจ๐‘Š๐‘Š240โจ๐‘Š๐‘Š250โจ๐‘Š๐‘Š280 1 (00011001000000001111010111110000, 00000100000000000000000000000000) ๐‘Œ๐‘Œ60 ๐‘Š๐‘Š40โจ๐‘Š๐‘Š50โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š170โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š190โจ๐‘Š๐‘Š200โจ ๐‘Š๐‘Š220โจ๐‘Š๐‘Š240โจ๐‘Š๐‘Š250โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š270โจ๐‘Š๐‘Š280 1 (00000110010001100100011000000000, 00000010000000000000000000000000) ๐‘Œ๐‘Œ70 ๐‘Š๐‘Š60โจ๐‘Š๐‘Š70โจ๐‘Š๐‘Š100โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š150โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š220โจ๐‘Š๐‘Š230 1 (00000110010001100100111100011001, 00000001000000000000000000000000) ๐‘Œ๐‘Œ80 ๐‘Š๐‘Š60โจ๐‘Š๐‘Š70โจ๐‘Š๐‘Š100โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š150โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š210โจ ๐‘Š๐‘Š220โจ๐‘Š๐‘Š230โจ๐‘Š๐‘Š240โจ๐‘Š๐‘Š280โจ๐‘Š๐‘Š290โจ๐‘Š๐‘Š320 1 (01100000011001000110010000000000, 00000000100000000000000000000000) ๐‘Œ๐‘Œ90 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š30โจ๐‘Š๐‘Š100โจ๐‘Š๐‘Š110โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š190โจ๐‘Š๐‘Š220 1 (01111001011011010110010000000000, 00000000010000000000000000000000) ๐‘Œ๐‘Œ100 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š30โจ๐‘Š๐‘Š40โจ๐‘Š๐‘Š50โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š100โจ๐‘Š๐‘Š110โจ ๐‘Š๐‘Š130โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š190โจ๐‘Š๐‘Š220 1 (10010000100100010000000000011001, 00000000001000000000000000000000) ๐‘Œ๐‘Œ110 ๐‘Š๐‘Š10โจ๐‘Š๐‘Š40โจ๐‘Š๐‘Š90โจ๐‘Š๐‘Š120โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š280โจ๐‘Š๐‘Š290โจ๐‘Š๐‘Š320 1 (10010000100100010100011000011111, 00000000000100000000000000000000) ๐‘Œ๐‘Œ120 ๐‘Š๐‘Š10โจ๐‘Š๐‘Š40โจ๐‘Š๐‘Š90โจ๐‘Š๐‘Š120โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š220โจ ๐‘Š๐‘Š230โจ๐‘Š๐‘Š280โจ๐‘Š๐‘Š290โจ๐‘Š๐‘Š300โจ๐‘Š๐‘Š310โจ๐‘Š๐‘Š320 1 (10010001000000000001100100001001, 00000000000010000000000000000000) ๐‘Œ๐‘Œ130 ๐‘Š๐‘Š10โจ๐‘Š๐‘Š40โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š200โจ๐‘Š๐‘Š210โจ๐‘Š๐‘Š240โจ๐‘Š๐‘Š290โจ๐‘Š๐‘Š320 1 (11010111000001100001100100001001, 00000000000001000000000000000000) ๐‘Œ๐‘Œ140 ๐‘Š๐‘Š10โจ๐‘Š๐‘Š20โจ๐‘Š๐‘Š40โจ๐‘Š๐‘Š60โจ๐‘Š๐‘Š70โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š150โจ ๐‘Š๐‘Š200โจ๐‘Š๐‘Š210โจ๐‘Š๐‘Š240โจ๐‘Š๐‘Š290โจ๐‘Š๐‘Š320 1 (00001001000110010000000010010001, 00000000000000100000000000000000) ๐‘Œ๐‘Œ150 ๐‘Š๐‘Š50โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š120โจ๐‘Š๐‘Š130โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š250โจ๐‘Š๐‘Š280โจ๐‘Š๐‘Š320 1 (01101101011110010000000010010001, 00000000000000010000000000000000) ๐‘Œ๐‘Œ160 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š30โจ๐‘Š๐‘Š50โจ๐‘Š๐‘Š60โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š100โจ๐‘Š๐‘Š110โจ๐‘Š๐‘Š120โจ ๐‘Š๐‘Š130โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š250โจ๐‘Š๐‘Š280โจ๐‘Š๐‘Š320 1 (01100100011000000000000001100100, 00000000000000001000000000000000) ๐‘Œ๐‘Œ170 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š30โจ๐‘Š๐‘Š60โจ๐‘Š๐‘Š100โจ๐‘Š๐‘Š110โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š270โจ๐‘Š๐‘Š300 1 (01101101011110010000000001100100, 00000000000000000100000000000000) ๐‘Œ๐‘Œ180 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š30โจ๐‘Š๐‘Š50โจ๐‘Š๐‘Š60โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š100โจ๐‘Š๐‘Š110โจ๐‘Š๐‘Š120โจ ๐‘Š๐‘Š130โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š270โจ๐‘Š๐‘Š300 1 (01000110000001100000000001000110, 00000000000000000010000000000000) ๐‘Œ๐‘Œ190 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š60โจ๐‘Š๐‘Š70โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š150โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š300โจ๐‘Š๐‘Š310 1 (01000110000001100001100101001111, 00000000000000000001000000000000) ๐‘Œ๐‘Œ200 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š60โจ๐‘Š๐‘Š70โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š150โจ๐‘Š๐‘Š200โจ๐‘Š๐‘Š210โจ ๐‘Š๐‘Š240โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š290โจ๐‘Š๐‘Š300โจ๐‘Š๐‘Š310โจ๐‘Š๐‘Š320 1 (00000000010001100100011000000110, 00000000000000000000100000000000) ๐‘Œ๐‘Œ210 ๐‘Š๐‘Š100โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š150โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š220โจ๐‘Š๐‘Š230โจ๐‘Š๐‘Š300โจ๐‘Š๐‘Š310 1 (10010000110101110100011000000110, 00000000000000000000010000000000) ๐‘Œ๐‘Œ220 ๐‘Š๐‘Š10โจ๐‘Š๐‘Š40โจ๐‘Š๐‘Š90โจ๐‘Š๐‘Š100โจ๐‘Š๐‘Š120โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š150โจ ๐‘Š๐‘Š160โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š220โจ๐‘Š๐‘Š230โจ๐‘Š๐‘Š300โจ๐‘Š๐‘Š310 1 (00011001000010011001000100000000, 00000000000000000000001000000000) ๐‘Œ๐‘Œ230 ๐‘Š๐‘Š40โจ๐‘Š๐‘Š50โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š130โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š170โจ๐‘Š๐‘Š200โจ๐‘Š๐‘Š240 1 (01111001011011011001000100000000, 00000000000000000000000100000000) ๐‘Œ๐‘Œ240 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š30โจ๐‘Š๐‘Š40โจ๐‘Š๐‘Š50โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š100โจ๐‘Š๐‘Š110โจ ๐‘Š๐‘Š130โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š170โจ๐‘Š๐‘Š200โจ๐‘Š๐‘Š240 1 (01100100000000000110000001100100, 00000000000000000000000010000000) ๐‘Œ๐‘Œ250 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š30โจ๐‘Š๐‘Š60โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š190โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š270โจ๐‘Š๐‘Š300 1 (01100100000000001111000011110101, 00000000000000000000000001000000) ๐‘Œ๐‘Œ260 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š30โจ๐‘Š๐‘Š60โจ๐‘Š๐‘Š170โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š190โจ๐‘Š๐‘Š200โจ ๐‘Š๐‘Š250โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š270โจ๐‘Š๐‘Š280โจ๐‘Š๐‘Š300โจ๐‘Š๐‘Š320 1 (01000110000000000000011001000110, 00000000000000000000000000100000) ๐‘Œ๐‘Œ270 ๐‘Š๐‘Š20โจ๐‘Š๐‘Š60โจ๐‘Š๐‘Š70โจ๐‘Š๐‘Š220โจ๐‘Š๐‘Š230โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š300โจ๐‘Š๐‘Š310 1 (11010111100100000000011001000110, 00000000000000000000000000010000) ๐‘Œ๐‘Œ280 ๐‘Š๐‘Š10โจ๐‘Š๐‘Š20โจ๐‘Š๐‘Š40โจ๐‘Š๐‘Š60โจ๐‘Š๐‘Š70โจ๐‘Š๐‘Š80โจ๐‘Š๐‘Š90โจ๐‘Š๐‘Š120โจ ๐‘Š๐‘Š220โจ๐‘Š๐‘Š230โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š300โจ๐‘Š๐‘Š310 1 (00000000011001000110010001100000, 00000000000000000000000000001000) ๐‘Œ๐‘Œ290 ๐‘Š๐‘Š100โจ๐‘Š๐‘Š110โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š190โจ๐‘Š๐‘Š220โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š270 1 (00000000011001001111010111110000, 00000000000000000000000000000100) ๐‘Œ๐‘Œ300 ๐‘Š๐‘Š100โจ๐‘Š๐‘Š110โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š170โจ๐‘Š๐‘Š180โจ๐‘Š๐‘Š190โจ๐‘Š๐‘Š200โจ ๐‘Š๐‘Š22_0โจ๐‘Š๐‘Š24_0โจ๐‘Š๐‘Š250โจ๐‘Š๐‘Š260โจ๐‘Š๐‘Š270โจ๐‘Š๐‘Š280 1 (00000000100100010000100100011001, 00000000000000000000000000000010) ๐‘Œ๐‘Œ310 ๐‘Š๐‘Š90โจ๐‘Š๐‘Š120โจ๐‘Š๐‘Š160โจ๐‘Š๐‘Š210โจ๐‘Š๐‘Š240โจ๐‘Š๐‘Š280โจ๐‘Š๐‘Š290โจ๐‘Š๐‘Š320 1 (00000110110101110000100100011001, 00000000000000000000000000000001) ๐‘Œ๐‘Œ320 ๐‘Š๐‘Š60โจ๐‘Š๐‘Š70โจ๐‘Š๐‘Š90โจ๐‘Š๐‘Š100โจ๐‘Š๐‘Š120โจ๐‘Š๐‘Š140โจ๐‘Š๐‘Š150โจ ๐‘Š๐‘Š160โจ๐‘Š๐‘Š210โจ๐‘Š๐‘Š240โจ๐‘Š๐‘Š280โจ๐‘Š๐‘Š290โจ๐‘Š๐‘Š320 1 K. Kyuregyan 131 ๐‘Š๐‘Š 28 7 6 5 4 3 2 1 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 27 7 6 5 4 3 2 1 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 26 7 6 5 4 3 2 1 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 25 7 6 5 4 3 2 1 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 20 7 6 5 4 3 2 1 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 19 7 6 5 4 3 2 1 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 18 7 6 5 4 3 2 1 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 17 7 6 5 4 3 2 1 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 12 7 6 5 4 3 2 1 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 11 7 6 5 4 3 2 1 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 10 7 6 5 4 3 2 1 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 9 7 6 5 4 3 2 1 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 4 7 6 5 4 3 2 1 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 3 7 6 5 4 3 2 1 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 2 7 6 5 4 3 2 1 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Š๐‘Š 1 7 6 5 4 3 2 1 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In pu t b it O ut pu t b it ๐‘Œ๐‘Œ1 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ2 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ3 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ4 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ5 0 ๐‘Œ๐‘Œ6 0 ๐‘Œ๐‘Œ7 0 ๐‘Œ๐‘Œ8 0 T ab le 2 . D ep en de nc ie s fo r c er ta in b its o f t he P H T o ut pu t ๐‘Œ๐‘Œ o n ce rt ai n bi ts o f t he P H T in pu t ๐‘Š๐‘Š (" 0" -n o de pe nd en ce , " 1" -b in ar y lin ea r d ep en de nc e (i .e ., co m pl em en tin g th is in pu t b it co m pl em en ts th e co rr es po nd in g ou tp ut b it) , " n" - n on -l in ea r b in ar y de pe nd en ce . Linear Cryptanalysis of SAFER-256 132 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Œ๐‘Œ9 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ1 0 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ1 1 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ1 2 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ1 3 0 ๐‘Œ๐‘Œ1 4 0 ๐‘Œ๐‘Œ1 5 0 ๐‘Œ๐‘Œ1 6 0 K. Kyuregyan 133 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Œ๐‘Œ1 7 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ1 8 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ1 9 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ2 0 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ2 1 0 ๐‘Œ๐‘Œ2 2 0 ๐‘Œ๐‘Œ2 3 0 ๐‘Œ๐‘Œ2 4 0 Linear Cryptanalysis of SAFER-256 134 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 n n n n n n 0 1 n n n n n 0 0 1 n n n n 0 0 0 1 n n n 0 0 0 0 1 n n 0 0 0 0 0 1 n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ๐‘Œ๐‘Œ2 5 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ2 6 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ2 7 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ2 8 7 6 5 4 3 2 1 0 ๐‘Œ๐‘Œ2 9 0 ๐‘Œ๐‘Œ3 0 0 ๐‘Œ๐‘Œ3 1 0 ๐‘Œ๐‘Œ3 2 0 K. Kyuregyan 135 The half round containing the nonlinear function NL and find homomorphic I/O sums for NL that have non-zero imbalance. Here the input function is homomorphic for XOR/ADD and the output function is homomorphic for ADD/XOR. Such I/O sums can be obtained by summing I/O sums for its EXP and LOG blocks. For the function EXP with the input byte U1 and output byte V1, the only homomorphic I/O sums are ๐‘†๐‘†๐‘Ž๐‘Ž1,๐‘๐‘1 EXP = ๐‘ข๐‘ข๐‘Ž๐‘Ž1(U1)โจ ๐‘ข๐‘ข๐‘๐‘1(V1), for ๐ด๐ด1 โˆˆ ๐ต๐ต8\{00}; ๐‘๐‘1 = 01. The most effective ones are obtained when (๐ด๐ด1, ๐‘๐‘1) is equal to (๐‘๐‘๐‘๐‘, 01) or (๐‘ข๐‘ข๐‘ข๐‘ข, 01) (the imbalance being 28 128 ) or to (86,01), (๐‘๐‘๐‘ข๐‘ข, 01), (๐‘๐‘0, 01) or (๐‘ข๐‘ข7,01) (the imbalance being 24 128 ). Computing all these I/O sums for EXP, establishes the following. Remark 1: ๐ผ๐ผ๏ฟฝ๐‘†๐‘†01,01๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ ๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†02,01๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ ๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†03,01๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ ๏ฟฝ = 0. Furthermore, for all ๐ด๐ด1 and ๐‘๐‘1 in ๐ต๐ต8, if ๐ด๐ด17 = 0, then ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž1,๐‘๐‘1 ๐ธ๐ธ๐ธ๐ธ๐ธ๐ธ ๏ฟฝ = 0. For the function LOG with the input U2 and output V2, the only homomorphic I/O sums are ๐‘†๐‘†๐‘Ž๐‘Ž2,๐‘๐‘2 LOG = ๐‘ข๐‘ข๐‘Ž๐‘Ž2(U2)โจ ๐‘ข๐‘ข๐‘๐‘2(V2), for ๐ด๐ด2 = 01; ๐‘๐‘2 โˆˆ ๐ต๐ต8\{00}. Their imbalance is easily deduced since ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž1,๐‘๐‘1 EXP ๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘๐‘1,๐‘Ž๐‘Ž1 LOG ๏ฟฝ. Remark 2: For all ๐ด๐ด1 and ๐‘๐‘1 in ๐ต๐ต8, if ๐‘๐‘17 = 0, then ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž1,๐‘๐‘1 ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ๐ฟ ๏ฟฝ = 0. Finally we have link I/O sums for successive half rounds. Theorem 1: The procedure for finding effective homomorphic I/O sums doesnโ€™t find an I/O sum with non-zero imbalance for cascade of half rounds taken in the same order as they are used in SAFER-256 and containing at least two ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ-layers. Proof: Let ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž,๐‘๐‘ PHTโˆ’hr, ๐‘ƒ๐‘ƒ๐‘๐‘,๐‘๐‘ NL and ๐‘ƒ๐‘ƒ๐‘๐‘,๐‘‘๐‘‘ PHTโˆ’hr be linked homomorphic half-round threefold sums with maximizing key function. If ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž,๐‘๐‘ PHTโˆ’hr and ๐‘ƒ๐‘ƒ๐‘๐‘,๐‘‘๐‘‘ PHTโˆ’hr have none zero imbalance, the 256 bit none zero masks a, b, c, d, can have a 1 only in the two least significant bits of each byte (bits of byte are numbered from 7 for the most significant bit to 0 for the least significant bit) (Lemma 1). Then ๐ผ๐ผ๏ฟฝ๐‘ƒ๐‘ƒ๐‘๐‘,๐‘๐‘ NL๏ฟฝ = 0 since the I/O sum average key imbalance is also 0 (Remark 1) Therefore, the sum of the three half-round threefold sums has imbalance 0. One of the most effective I/O sums is ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ NLโˆ’PHTโˆ’NL, where ๐ด๐ด2, ๐ด๐ด10 and ๐‘๐‘13, ๐‘๐‘14, ๐‘๐‘31, ๐‘๐‘32 are either ๐‘๐‘๐‘๐‘ or ๐‘ข๐‘ข๐‘ข๐‘ขand other bytes of ๐ด๐ด and ๐‘๐‘ are zero. Their imbalance is ๏ฟฝ 28 128 ๏ฟฝ 6 , because ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘“๐‘“๐‘“๐‘“,01 EXP ๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘๐‘๐‘‘๐‘‘,01 EXP ๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†01,๐‘“๐‘“๐‘“๐‘“ LOG ๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†01,๐‘๐‘๐‘‘๐‘‘ LOG ๏ฟฝ = 28 128 and because ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž,๐‘๐‘ PHT๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž1โจ๐‘Ž๐‘Ž2โจ๐‘Ž๐‘Ž3โจ๐‘Ž๐‘Ž4,๐‘๐‘1โจ๐‘๐‘2โจ๐‘๐‘3โจ๐‘๐‘4 PHT ๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž1,๐‘๐‘1 PHT ๏ฟฝ โˆ™ ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž2,๐‘๐‘2 PHT ๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž3,๐‘๐‘3 PHT ๏ฟฝ = ๐ผ๐ผ๏ฟฝ๐‘†๐‘†๐‘Ž๐‘Ž4,๐‘๐‘4 PHT ๏ฟฝ = 1, if ๐ด๐ด1โจ๐ด๐ด2โจ๐ด๐ด3โจ๐ด๐ด4 = (01 00 00 01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 01 01 00 00 01 00 00 00 00 01 00 00 01 )โจ (01 01 00 01 00 01 01 01 00 00 00 00 00 01 01 00 00 00 00 01 01 00 00 01 00 00 00 00 01 00 00 01) โจ (00 00 00 00 00 00 00 00 01 00 00 01 00 00 00 01 00 00 00 00 01 00 00 01 00 00 00 01 01 00 00 01) โจ (00 00 00 00 00 01 01 00 01 01 00 01 00 01 01 01 00 00 00 00 01 00 00 01 00 00 00 01 Linear Cryptanalysis of SAFER-256 136 01 00 00 01) = (00 01 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00) = ๐ด๐ด (hex notation), ๐‘๐‘1โจ๐‘๐‘2โจ๐‘๐‘3โจ๐‘๐‘4 = (00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00)โจ (00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00)โจ (00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00) โจ (00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 (00 00 00 00 00 00 00 00 00 00 00 00 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 01) = ๐‘๐‘ (hex notation). Thus, we have proved that SAFER-256 is secure against the linear cryptanalysis after only three of its suggested six rounds. Acknowledgement The author is thankful to Prof. Gurgen Khachatrian and Dr. Melsik Kureghyan for very useful discussions and comments. References [1] G. H. Khachatrian, M. K. Kyureghyan, K. M. Kyuregyan, Design and Cryptanalysis of a New Encryption Algorithm SAFER-256. Transactions of IIAP NAS RA, Mathematical Problems of Computer Science Vol. 42, pp. 97-106, 2014. [2] H. Carlo, Cryptanalysis of iterated Block Ciphers, ETH Series In Information Processing (Ed Massey), v. 7, Konstanz: Hartung-Gorre Verlag, 1996. Submitted 05.11.2016, accepted 03.02.2016 K. Kyuregyan 137 SAFER-256 ีฐีกีดีกีฏีกึ€ีฃีซ ีฃีฎีกีตีซีถ ีพีฅึ€ีฌีธึ‚ีฎีธึ‚ีฉีตีธึ‚ีถีจ ี”.ิฟีตีธึ‚ึ€ีฅีฒีตีกีถ ิฑีดึƒีธึƒีธึ‚ีด ิฑีตีฝ ีฐีธีคีพีกีฎีธึ‚ีด ีถีฅึ€ีฏีกีตีกึีพีกีฎ ีง 256 ีขีซีฉ ีขีฌีธีฏีซ ีฅึ€ีฏีกึ€ีธึ‚ีฉีตีกีถ SAFER-256 ีขีฌีธีฏีกีตีซีถ ีฎีกีฎีฏีกีฃึ€ีกีฏีกีถ ีฐีกีดีกีฏีกึ€ีฃีซ ีฃีฎีกีตีซีถ ีพีฅึ€ีฌีธึ‚ีฎีธึ‚ีฉีตีธึ‚ีถีจ, ีธึ€ีจ ีคีซึ†ีฅึ€ีฅีถึีซีกีฌ ีพีฅึ€ีฌีธึ‚ีฎีธึ‚ีฉีตีกีถ ีถีฏีกีฟีดีกีดีข ีฏีกีตีธึ‚ีถ ีง 5 ีผีกีธึ‚ีถีคีซึ ีฐีฅีฟีธ: ะ›ะธะฝะตะนะฝะฝั‹ะน ะบั€ะธะฟั‚ะพะฐะฝะฐะปะธะท ะฐะปะณะพั€ะธั‚ะผะฐ SAFER-256 ะš. ะšัŽั€ะตะณัะฝ ะะฝะฝะพั‚ะฐั†ะธั ะ’ ะดะฐะฝะฝะพะน ัั‚ะฐั‚ัŒะต ะฟั€ะตะดัั‚ะฐะฒะปะตะฝ ะปะธะฝะตะนะฝั‹ะน ะบั€ะธะฟั‚ะพะฐะฝะฐะปะธะท ะฑะปะพั‡ะฝะพะณะพ ัˆะธั„ั€ะฐ SAFER-256, ะบะพั‚ะพั€ะฐั ัƒัั‚ะพะนั‡ะธะฒะฐ ะฟะพ ะพั‚ะฝะพัˆะตะฝะธัŽ ะบ ะดะธั„ั„ะตั€ะตะฝั†ะธะฐะปัŒะฝะพะผัƒ ะฐะฝะฐะปะธะทัƒ ะฟะพัะปะต 5 ั€ะฐั‹ะฝะดะพะฒ. [1] G. H. Khachatrian, M. K. Kyureghyan, K. M. Kyuregyan, Design and Cryptanalysis of a New Encryption Algorithm SAFER-256. Transactions of IIAP NAS RA, Mathematical Problems of Computer Science Vol. 42, pp. 97-106, 2014. [2] H. Carlo, Cryptanalysis of iterated Block Ciphers, ETH Series In Information Processing (Ed Massey), v. 7, Konstanz: Hartung-Gorre Verlag, 1996.