Начиная с начала 2000 года осуществляется внедрение GHIS в здравоохранении, в рамках принятого проекта о реформирование информ Mathematical Problems of Computer Science 43, 52--56, 2015. Reconstruction of Distorted Images Souren B. Alaverdyan Institute for Informatics and Automation Problems of NAS RA e-mail: souren@ipia.sci.am Abstract The non-focused images quality arising algorithm based on Winer filtration is presented in the paper. Filtration is realized in spectral domain of image. Keywords: Filter, Image, Spectrum, Wiener. 1. Introduction During the image registration there often appear distortions of different types depending on registering devices characteristics (permission), technical situation of location and also peculiarities of the area being registered. On images obtained by optical devices there can be violations of focal distance; there can appear diffusions when moving objects are being registered, etc. We consider the image as a function of two variables 𝑓𝑓(𝑥𝑥, 𝑦𝑦) which is the projection of two or three dimensional fields of view, where (𝑥𝑥, 𝑦𝑦) is a coordinate of any point of plane and 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is the light intensity in the point (𝑥𝑥, 𝑦𝑦). We’ll consider a problem of optically [1] registered distorted images reconstructon in spectral area, because optical systems focus the falling light and that can be expressed by Fourie transform, so the image reconstruction problem reduces the solving of integral equations of second order. 2. Image reconstruction Let 𝑔𝑔(𝑥𝑥, 𝑦𝑦) be the given image and 𝑓𝑓(𝑥𝑥, 𝑦𝑦) be the reconstructing image. Then the following equation [2] takes place: 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = �𝑓𝑓(𝑢𝑢, 𝑣𝑣)ℎ(𝑥𝑥, 𝑦𝑦, 𝑢𝑢, 𝑣𝑣)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣, (1) where the function ℎ(𝑥𝑥, 𝑦𝑦, 𝑢𝑢, 𝑣𝑣) is called an image registering system’s impulse response (output value corresponding to unit impulse). To solve this equation we’ll give some assumptions. 52 mailto:souren@ipia.sci.am S. Alaverdyan 53 Definition 1: The system is called space-invariant, if its impulse function response depends on the difference between the input(𝑥𝑥, 𝑦𝑦) and output(𝑥𝑥, 𝑦𝑦) planes coordinates: ℎ(𝑥𝑥, 𝑦𝑦, 𝑢𝑢, 𝑣𝑣) = ℎ(𝑥𝑥 − 𝑢𝑢, 𝑦𝑦 − 𝑣𝑣). For such system the equation (1) will be represented as 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = �𝑓𝑓(𝑢𝑢, 𝑣𝑣)ℎ(𝑥𝑥 − 𝑢𝑢, 𝑦𝑦 − 𝑣𝑣)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣, (2) which is usually called a convolution. Equation (2) can also be represented as 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) ∗ ℎ(𝑥𝑥, 𝑦𝑦). (3) Since 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is a function of image describing the range of vision, and 𝑔𝑔(𝑥𝑥, 𝑦𝑦) is a function of registered image, we can see that ℎ(𝑥𝑥, 𝑦𝑦) is a noise describing function. In general case linear filtration algorithms are realized by transforms of type (2) having the following discrete representation 𝑔𝑔𝑖𝑖,𝑗𝑗 = � � 𝑓𝑓𝑘𝑘,𝑙𝑙ℎ𝑘𝑘−𝑖𝑖+𝑟𝑟 2� ,𝑙𝑙−𝑗𝑗+𝑟𝑟 2� , 𝑖𝑖 ∈ � 𝑟𝑟 2� , 𝑀𝑀 + 𝑟𝑟 2� �, 𝑗𝑗 ∈ � 𝑟𝑟 2� , 𝑁𝑁 + 𝑟𝑟 2� �. 𝑗𝑗+𝑟𝑟/2 𝑙𝑙=𝑗𝑗−𝑟𝑟/2 𝑖𝑖+𝑟𝑟/2 𝑘𝑘=𝑖𝑖−𝑟𝑟/2 (4) 𝑀𝑀 is the number of image rows, 𝑁𝑁 is the number of image columns, the sum includes the points of rectangular with centre(𝑖𝑖, 𝑗𝑗) and 2𝑟𝑟 + 1 sides. Before calculation of transform (4) all sides of image should be already widened by rectangular layers of width 𝑟𝑟/2. In spectral domain the linear filtration algorithm is also based on convolution theorem, so instead of calculating by formula (4) it can be realized by the following formula: 𝐺𝐺(𝑢𝑢, 𝑣𝑣) = 𝐹𝐹(𝑢𝑢, 𝑣𝑣)𝐻𝐻(𝑢𝑢, 𝑣𝑣), (5) where 𝐺𝐺, 𝐹𝐹, 𝐻𝐻 are Fourier transforms of functions 𝑔𝑔, 𝑓𝑓, ℎ. Note, that complex multiplication is realized by all 𝑢𝑢, 𝑣𝑣 frequencies. Now we’ll represent the mathematical model of the system: 𝑓𝑓(𝑥𝑥, 𝑦𝑦) -input image function ( undistorted), ℎ(𝑥𝑥, 𝑦𝑦) - noise causing function, 𝑛𝑛(𝑥𝑥, 𝑦𝑦) - total noise, 𝑔𝑔(𝑥𝑥, 𝑦𝑦) - distorted image (fuzzified, unfocused). So we have the following representation of the process: 𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) ∗ ℎ(𝑥𝑥, 𝑦𝑦) + 𝑛𝑛(𝑥𝑥, 𝑦𝑦). (6) It is required to find the impulse characteristic function which will be for the system the best reconstruction function by mean square deviation Reconstruction of Distorted Images 54 𝜎𝜎 = � 1 𝑚𝑚𝑛𝑛 � ��𝑓𝑓𝑖𝑖,𝑗𝑗−𝑓𝑓𝑖𝑖,𝑗𝑗� 2 𝑛𝑛−1 𝑗𝑗=0 𝑚𝑚−1 𝑖𝑖=0 → 𝑚𝑚𝑖𝑖𝑛𝑛. The problem solution for linear stationary processes was given by Wiener, the detailed proof is given in [3]. The best approximating filter’s spectral representation of function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is represented as [3] 𝐹𝐹�(𝑢𝑢, 𝑣𝑣) = 1 𝐻𝐻(𝑢𝑢, 𝑣𝑣) ∙ |𝐻𝐻(𝑢𝑢, 𝑣𝑣)|2 |𝐻𝐻(𝑢𝑢, 𝑣𝑣)|2 + 𝑆𝑆𝑛𝑛(𝑢𝑢. 𝑣𝑣) 𝑆𝑆𝑓𝑓(𝑢𝑢. 𝑣𝑣) � 𝐺𝐺(𝑢𝑢, 𝑣𝑣), (7) where 𝑆𝑆𝑛𝑛(𝑢𝑢. 𝑣𝑣) is the spectral density of additive noise and 𝑆𝑆𝑓𝑓(𝑢𝑢. 𝑣𝑣)- 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is the spectral density of the function. Generally these values are unknown. The ratio 𝑆𝑆𝑛𝑛(𝑢𝑢. 𝑣𝑣)/𝑆𝑆𝑓𝑓(𝑢𝑢. 𝑣𝑣) is the inverse value of signal-noise value. Its value in time domain is considered acceptable if it is in the interval of 30-40 decibels. The noises induced by focal distance violations on the images registered by the optical devices mainly depend on the light dispersion problem described by the following two functions: ℎ(𝑥𝑥, 𝑦𝑦) = 1 2𝜋𝜋𝜎𝜎2 𝑒𝑒− 𝑥𝑥2+𝑦𝑦2 2𝜎𝜎2 , ℎ(𝑥𝑥, 𝑦𝑦) = � 1 𝜋𝜋𝑟𝑟2 , 𝑖𝑖𝑓𝑓 𝑥𝑥2 + 𝑦𝑦2 < 𝑟𝑟2 0, 𝑖𝑖𝑓𝑓 𝑥𝑥2 + 𝑦𝑦2 ≥ 𝑟𝑟2. If the image doesn’t include an additive noise then 𝑛𝑛(𝑥𝑥, 𝑦𝑦) = 0 and the formula (7) is represented as 𝐹𝐹�(𝑢𝑢, 𝑣𝑣) = 𝐺𝐺(𝑢𝑢, 𝑣𝑣)/𝐻𝐻(𝑢𝑢, 𝑣𝑣) , (8) and is called an inverse filter. 3. Inverse Filters Indeterminacy appears when because of some device errors during image registering under some frequencies the value of denominator 𝐻𝐻(𝑢𝑢, 𝑣𝑣) of equation (8) is equal to 0. In such cases the value of spectrum corresponding to this value of image is set equal to zero. As a result, on the filtered image there appear obvious horizontal or vertical (sometimes curved) phenomena. To reduce such occurrences we offer to realize the low- frequency interpolation in spectral domain: 𝐹𝐹� (𝑢𝑢, 𝑣𝑣) = � � 𝑠𝑠𝑖𝑖,𝑗𝑗, 𝑢𝑢+𝑤𝑤 𝑗𝑗=𝑣𝑣−𝑤𝑤 𝑢𝑢+𝑤𝑤 𝑖𝑖=𝑢𝑢−𝑤𝑤 (9) where S. Alaverdyan 55 𝑠𝑠𝑖𝑖,𝑗𝑗 = ⎩ ⎨ ⎧𝐹𝐹(𝑖𝑖, 𝑗𝑗) sin(2𝜋𝜋𝑓𝑓𝑖𝑖) 𝑖𝑖 sin(2𝜋𝜋𝑓𝑓𝑗𝑗) 𝑗𝑗 , 𝑖𝑖𝑓𝑓 𝑖𝑖 > 0, 𝑗𝑗 > 0, 2𝜋𝜋𝑓𝑓𝐹𝐹(𝑖𝑖, 𝑗𝑗), 𝑖𝑖𝑓𝑓 𝑖𝑖 = 0 𝑜𝑜𝑟𝑟 𝑗𝑗 = 0, 0, 𝑖𝑖𝑓𝑓 𝑖𝑖 < 0 𝑜𝑜𝑟𝑟 𝑗𝑗 < 0. In case of 𝑖𝑖 = 𝑤𝑤, 𝑗𝑗 = 𝑤𝑤 , 𝐹𝐹�(𝑢𝑢, 𝑣𝑣) = 2𝜋𝜋𝑓𝑓, 𝑓𝑓 ∈ (0; 0,5). There are many internet investigations and program realizations of this problem. I think, the system SmartDeblur-1.27-win is one of the best program realizations, but its mathematical apparatus is not presented in the work. The program realization of the method(5)-(9) presented in this paper has been fulfilled. The result of the system work and comparison with system SmartDeblur-1.27-win [4] are given below. a b c Fig. 1. a) input image including gauss noise with domain of dispersion 𝜎𝜎 = 3 and radius 𝑟𝑟 = 5, 𝑓𝑓 = 0.45; b) the result of program realization of developed system; c) the result of SmartDeblur-1.27-win system work. References [1] X. Chen, J. Yong,“Image deblur in gradient domain”,Optical Enginering, vol. 49, no. 11,117003, 2010. [2] У. Пратт, Цифровая обработка изображений, Мир, Москва 1982. [3] Н. Ахмед, К.Р. Рао,Ортогональные преобразования при обработке цифровых сигналов, Москва, “Связь”, стр. 164-181, 1980. [4] [Online]. Available: http://smartdeblur.net/ Submitted 10.12.2014, accepted 12. 02. 2015. http://smartdeblur.net/ Reconstruction of Distorted Images 56 Չֆոկուսացված պատկերների որակի բարձրացում Ս. Ալավերդյան Ամփոփում Աշխատանքում ներկայացվում է չֆոկուսացված պատկերների որակի բարձրացման նոր ալգորիթմ, որը հիմնված է Վիների ֆիլտրացիայի վրա: Ֆիլտրացիան իրականացվում է պատկերի սպեկտրալ տիրույթում: Улучшение качества расфокусированных изображений С. Алавердян Аннотация В работе представляется новый алгоритм улучшения качества расфокусированных изображений, который основан на фильтре Винера. Фильтрация выполняется в спектральной области изображения.