D:\FINAL_TEX\...\article.DVI Mathematical Problems of Computer Science 42, 28{42, 2014. I nter val T otal Color ings of Complete M ultipar tite Gr aphs and H yper cubes P e t r o s A . P e t r o s ya n 1; 2 a n d N e r s e s A . K h a c h a t r ya n 2 1Institute for Informatics and Automation Problems of NAS RA 2Department of Informatics and Applied Mathematics, YSU e-mail: pet petros@ipia.sci.am, xachnerses@gmail.com Abstract A total coloring of a graph G is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An interval total t-coloring of a graph G is a total coloring of G with colors 1; : : : ; t such that all colors are used, and the edges incident to each vertex v together with v are colored by dG(v) + 1 consecutive colors, where dG(v) is the degree of a vertex v in G. In this paper we prove that all complete multipartite graphs with the same number of vertices in each part are interval total colorable. Moreover, we also give some bounds for the minimum and the maximum span in interval total colorings of these graphs. Next, we investigate interval total colorings of hypercubes Qn. In particular, we prove that Qn (n ¸ 3) has an interval total t-coloring if and only if n + 1 · t · (n+1)(n+2)2 . Keywords: Total coloring, Interval total coloring, Interval coloring, Complete multipartite graph, Hypercube. 1 . In t r o d u c t io n A ll g r a p h s c o n s id e r e d in t h is p a p e r a r e ¯ n it e , u n d ir e c t e d a n d h a ve n o lo o p s o r m u lt ip le e d g e s . L e t V ( G ) a n d E ( G) d e n o t e t h e s e t s o f ve r t ic e s a n d e d g e s o f G, r e s p e c t ive ly. L e t V E ( G ) d e n o t e t h e s e t V ( G ) [ E ( G ) . Th e d e g r e e o f a ve r t e x v in G is d e n o t e d b y dG ( v ) , t h e m a xim u m d e g r e e o f ve r t ic e s in G b y ¢ ( G) a n d t h e t o t a l c h r o m a t ic n u m b e r o f G b y Â00 ( G) . Fo r S µ V ( G) , le t G[S] d e n o t e t h e s u b g r a p h o f G in d u c e d b y S, t h a t is , V ( G[S]) = S a n d E ( G[S]) c o n s is t s o f t h o s e e d g e s o f E ( G ) fo r wh ic h b o t h e n d s a r e in S. Fo r F µ E ( G ) , t h e s u b g r a p h o b t a in e d b y d e le t in g t h e e d g e s o f F fr o m G is d e n o t e d b y G ¡ F . Th e t e r m s a n d c o n c e p t s t h a t we d o n o t d e ¯ n e c a n b e fo u n d in [1 , 2 0 , 2 1 ]. L e t bac d e n o t e t h e la r g e s t in t e g e r le s s t h a n o r e qu a l t o a. Fo r t wo p o s it ive in t e g e r s a a n d b wit h a · b, t h e s e t fa; : : : ; bg is d e n o t e d b y [a; b] a n d c a lle d a n in t e r va l. Fo r a n in t e r va l [a; b] a n d a n o n n e g a t ive n u m b e r p, t h e n o t a t io n [a; b] © p m e a n s [a + p; b + p]. A p r o p e r e d g e -c o lo r in g o f a g r a p h G is a c o lo r in g o f t h e e d g e s o f G s u c h t h a t n o t wo a d ja c e n t e d g e s r e c e ive t h e s a m e c o lo r . If ® is a p r o p e r e d g e -c o lo r in g o f G a n d v 2 V ( G ) , t h e n S ( v; ® ) d e n o t e s t h e s e t o f c o lo r s a p p e a r in g o n e d g e s in c id e n t t o v. A p r o p e r e d g e -c o lo r in g o f a g r a p h G is a n in t e r va l t-c o lo r in g [2 ] if a ll c o lo r s a r e u s e d , a n d fo r a n y v 2 V ( G ) , t h e s e t S ( v; ®) is a n in t e r va l o f in t e g e r s . A g r a p h G is in t e r va l c o lo r a b le if it h a s a n in t e r va l 2 8 P. Petrosyan and N. Khachatryan 2 9 t-c o lo r in g fo r s o m e p o s it ive in t e g e r t. Th e s e t o f a ll in t e r va l c o lo r a b le g r a p h s is d e n o t e d b y N . Fo r a g r a p h G 2 N , t h e le a s t ( t h e m in im u m s p a n ) a n d t h e g r e a t e s t ( t h e m a xim u m s p a n ) va lu e s o f t fo r wh ic h G h a s a n in t e r va l t-c o lo r in g a r e d e n o t e d b y w ( G) a n d W ( G) , r e s p e c t ive ly. A t o t a l c o lo r in g o f a g r a p h G is a c o lo r in g o f it s ve r t ic e s a n d e d g e s s u c h t h a t n o a d ja c e n t ve r t ic e s , e d g e s , a n d n o in c id e n t ve r t ic e s a n d e d g e s o b t a in t h e s a m e c o lo r . If ® is a t o t a l c o lo r in g o f a g r a p h G, t h e n S [v; ®] d e n o t e s t h e s e t S ( v; ® ) [ f®( v ) g. A g r a p h Kn1;:::;nr is a c o m p le t e r-p a r t it e ( r ¸ 2 ) g r a p h if it s ve r t ic e s c a n b e p a r t it io n e d in t o r in d e p e n d e n t s e t s V1; : : : ; Vr wit h jVij = ni ( 1 · i · r ) s u c h t h a t e a c h ve r t e x in Vi is a d ja c e n t t o a ll t h e o t h e r ve r t ic e s in Vj fo r 1 · i < j · r. A c o m p le t e r-p a r t it e g r a p h Kn;:::;n is a c o m p le t e b a la n c e d r-p a r t it e g r a p h if jV1j = jV2j = ¢ ¢ ¢ = jVrj = n. Cle a r ly, if Kn;:::;n is a c o m p le t e b a la n c e d r-p a r t it e g r a p h wit h n ve r t ic e s in e a c h p a r t , t h e n ¢ ( Kn;:::;n ) = ( r ¡ 1 ) n. N o t e t h a t t h e c o m p le t e g r a p h Kn a n d t h e c o m p le t e b a la n c e d b ip a r t it e g r a p h Kn;n a r e s p e c ia l c a s e s o f t h e c o m p le t e b a la n c e d r-p a r t it e g r a p h . Th e t o t a l c h r o m a t ic n u m b e r s o f c o m p le t e a n d c o m p le t e b ip a r t it e g r a p h s we r e d e t e r m in e d b y B e h z a d , Ch a r t r a n d a n d Co o p e r [3 ]. Th e y p r o ve d t h e fo llo win g t h e o r e m s : T heor em 1: F or any n 2 N , we have Â00 ( Kn ) = ( n, if n is odd, n + 1 , if n is even. T heor em 2: F or any m; n 2 N , we have Â00 ( Km;n ) = ( m a xfm; ng + 1 , if m 6= n, n + 2 , if m = n. A m o r e g e n e r a l r e s u lt o n t o t a l c h r o m a t ic n u m b e r s o f c o m p le t e b a la n c e d m u lt ip a r t it e g r a p h s wa s o b t a in e d b y B e r m o n d [4 ]. T heor em 3: F or any complete balanced r-partite graph Kn;:::;n (r ¸ 2 ; n 2 N ), we have Â00 ( Kn;:::;n ) = ( ( r ¡ 1 ) n + 2 , if r = 2 or r is even and n is odd, ( r ¡ 1 ) n + 1 , otherwise. A n in t e r va l t o t a l t-c o lo r in g o f a g r a p h G is a t o t a l c o lo r in g ® o f G wit h c o lo r s 1 ; : : : ; t s u c h t h a t a ll c o lo r s a r e u s e d , a n d fo r a n y v 2 V ( G ) , t h e s e t S [v; ®] is a n in t e r va l o f in t e g e r s . A g r a p h G is in t e r va l t o t a l c o lo r a b le if it h a s a n in t e r va l t o t a l t-c o lo r in g fo r s o m e p o s it ive in t e g e r t. Th e s e t o f a ll in t e r va l t o t a l c o lo r a b le g r a p h s is d e n o t e d b y T . Fo r a g r a p h G 2 T , t h e le a s t ( t h e m in im u m s p a n ) a n d t h e g r e a t e s t ( t h e m a xim u m s p a n ) va lu e s o f t fo r wh ic h G h a s a n in t e r va l t o t a l t-c o lo r in g a r e d e n o t e d b y w¿ ( G) a n d W¿ ( G) , r e s p e c t ive ly. Cle a r ly, Â00 ( G ) · w¿ ( G) · W¿ ( G) · jV ( G) j + jE ( G) j fo r e ve r y g r a p h G 2 T . Th e c o n c e p t o f in t e r va l t o t a l c o lo r in g wa s in t r o d u c e d b y P e t r o s ya n [5 ]. In [5 , 6 ], t h e a u t h o r p r o ve d t h a t if m + n + 2 ¡ g c d ( m; n) · t · m + n + 1 , t h e n t h e c o m p le t e b ip a r t it e g r a p h Km;n h a s a n in t e r va l t o t a l t-c o lo r in g . L a t e r , P e t r o s ya n a n d To r o s ya n [1 8 ] o b t a in e d t h e fo llo win g r e s u lt s : T heor em 4: F or any m; n 2 N , we have W¿ ( Km;n ) = ( m + n + 1 , if m = n = 1 , m + n + 2 , otherwise. 3 0 Interval Total Colorings of Complete Multipartite Graphs and Hypercubes T heor em 5: F or any n 2 N , we have (1) Kn;n 2 T , (2) w¿ ( Kn;n ) =  00 ( Kn;n ) = n + 2 , (3) W¿ ( Kn;n ) = ( 2 n + 1 , if n = 1 , 2 n + 2 , if n ¸ 2 , (4) if w¿ ( Kn;n ) · t · W¿ ( Kn;n ) , then Kn;n has an interval total t-coloring. In [6 ], P e t r o s ya n in ve s t ig a t e d in t e r va l t o t a l c o lo r in g s o f c o m p le t e g r a p h s a n d h yp e r c u b e s , wh e r e h e p r o ve d t h e fo llo win g t wo t h e o r e m s : T heor em 6: F or any n 2 N , we have (1) Kn 2 T , (2) w¿ ( Kn ) = ( n, if n is odd, 3 2 n, if n is even, (3) W¿ ( Kn ) = 2 n ¡ 1 . T heor em 7: F or any n 2 N , we have (1) Qn 2 T , (2) w¿ ( Qn ) =  00 ( Qn ) = ( n + 2 , if n · 2 , n + 1 , if n ¸ 3 , (3) W¿ ( Qn ) ¸ (n+1)(n+2)2 , (4) if w¿ ( Qn ) · t · (n+1)(n+2)2 , then Qn has an interval total t-coloring. L a t e r , P e t r o s ya n a n d To r o s ya n [1 8 ] s h o we d t h a t if w¿ ( Kn ) · t · W¿ ( Kn ) , t h e n t h e c o m p le t e g r a p h Kn h a s a n in t e r va l t o t a l t-c o lo r in g . In [1 3 ], P e t r o s ya n a n d S h a s h ikya n p r o ve d t h a t t r e e s h a ve a n in t e r va l t o t a l c o lo r in g . In [1 4 , 1 5 , 1 6 ], P e t r o s ya n a n d S h a s h ikya n in ve s t ig a t e d in t e r va l t o t a l c o lo r in g s o f b ip a r t it e g r a p h s . In p a r t ic u la r , t h e y p r o ve d t h a t r e g u la r b ip a r t it e g r a p h s , s u b c u b ic b ip a r t it e g r a p h s , d o u b ly c o n ve x b ip a r t it e g r a p h s , ( 2 ; b) - b ir e g u la r b ip a r t it e g r a p h s a n d s o m e c la s s e s o f b ip a r t it e g r a p h s wit h m a xim u m d e g r e e 4 h a ve in t e r va l t o t a l c o lo r in g s . Th e y a ls o s h o we d t h a t t h e r e a r e b ip a r t it e g r a p h s t h a t h a ve n o in t e r va l t o t a l c o lo r in g . Th e s m a lle s t kn o wn b ip a r t it e g r a p h wit h 2 6 ve r t ic e s a n d m a xim u m d e g r e e 1 8 t h a t is n o t in t e r va l t o t a l c o lo r a b le wa s o b t a in e d b y S h a s h ikya n [1 9 ]. On e o f t h e le s s -in ve s t ig a t e d p r o b le m s r e la t e d t o in t e r va l t o t a l c o lo r in g s is a p r o b le m o f d e t e r m in in g t h e e xa c t va lu e s o f t h e m in im u m a n d t h e m a xim u m s p a n in in t e r va l t o t a l c o lo r in g s o f g r a p h s . Th e e xa c t va lu e s o f t h e s e p a r a m e t e r s a r e kn o wn o n ly fo r p a t h s , c yc le s , t r e e s [1 3 , 1 4 ], wh e e ls [1 0 ], c o m p le t e a n d c o m p le t e b a la n c e d b ip a r t it e g r a p h s [5 , 6 , 1 8 ]. In s o m e p a p e r s [8 , 1 1 , 1 2 , 1 7 ] lo we r a n d u p p e r b o u n d s a r e fo u n d fo r t h e m in im u m a n d t h e m a xim u m s p a n in in t e r va l t o t a l c o lo r in g s o f c e r t a in g r a p h s . In t h is p a p e r we p r o ve t h a t a ll c o m p le t e b a la n c e d m u lt ip a r t it e g r a p h s a r e in t e r va l t o t a l c o lo r a b le a n d we d e r ive s o m e b o u n d s fo r t h e m in im u m a n d t h e m a xim u m s p a n in in t e r va l t o t a l c o lo r in g s o f t h e s e g r a p h s . N e xt , we in ve s t ig a t e in t e r va l t o t a l c o lo r in g s o f h yp e r c u b e s Qn a n d we s h o w t h a t W¿ ( Qn ) = (n+1)(n+2) 2 fo r a n y n 2 N . P. Petrosyan and N. Khachatryan 3 1 2 . In t e r va l To t a l Co lo r in g s o f Co m p le t e Mu lt ip a r t it e Gr a p h s W e ¯ r s t c o n s id e r in t e r va l t o t a l c o lo r in g s o f c o m p le t e b ip a r t it e g r a p h s . It is kn o wn t h a t Km;n 2 T a n d w¿ ( Km;n ) · m + n + 2 ¡ g c d ( m; n) fo r a n y m; n 2 N , b u t in g e n e r a l t h e e xa c t va lu e o f w¿ ( Km;n ) is u n kn o wn . Ou r ¯ r s t r e s u lt g e n e r a liz e s t h e p o in t ( 2 ) o f Th e o r e m 5 . T heor em 8: F or any n; l 2 N , we have w¿ ( Kn;n¢l ) = Â00 ( Kn;n¢l ) . N o w we a s s u m e t h a t l ¸ 2 . L e t V ( Kn;n¢l ) = fu1; : : : ; un; v1; : : : ; vn¢lg a n d E ( Kn;n¢l ) = fuivjj 1 · i · n; 1 · j · n¢lg. A ls o , le t G = Kn;n¢l [fu1; : : : ; un; v1; : : : ; vng]. Cle a r ly, G is is o m o r p h ic t o t h e g r a p h Kn;n. N o w we d e ¯ n e a n e d g e -c o lo r in g ® o f G a s fo llo ws : fo r 1 · i · n a n d 1 · j · n, le t ® ( uivj ) = ( i + j ¡ 1 ( m o d n) , if i + j 6= n + 1 , n, if i + j = n + 1 . It is e a s y t o s e e t h a t ® is a p r o p e r e d g e -c o lo r in g o f G a n d S ( ui; ®) = S ( vi; ® ) = [1 ; n] fo r 1 · i · n. N e xt we c o n s t r u c t a n in t e r va l t o t a l ( n¢l +1 ) -c o lo r in g o f Kn;n¢l. B e fo r e we g ive t h e e xp lic it d e ¯ n it io n o f t h e c o lo r in g , we n e e d t wo a u xilia r y fu n c t io n s . Fo r i 2 N , we d e ¯ n e a fu n c t io n f1 ( i) a s fo llo ws : f1 ( i) = 1 + ( i ¡ 1 ) ( m o d n) . Fo r j 2 N , we d e ¯ n e a fu n c t io n f2 ( j ) a s fo llo ws : f2 ( j ) = j j¡1 n k . N o w we a r e a b le t o d e ¯ n e a t o t a l c o lo r in g ¯ o f Kn;n¢l. Fo r 1 · i · n, le t ¯ ( ui ) = n ¢ l + 1 . Fo r 1 · j · n ¢ l, le t ¯ ( vj ) = ( n + 1 , if 1 · j · n, n ¢ f2 ( j ) , if n + 1 · j · n ¢ l. Fo r 1 · i · n a n d 1 · j · n ¢ l, le t ¯ ( uivj ) = ® ³ uf1(i)vf1(j) ´ + n ¢ f2 ( j ) . L e t u s p r o ve t h a t ¯ is a n in t e r va l t o t a l ( n ¢ l + 1 ) -c o lo r in g o f Kn;n¢l. B y t h e d e ¯ n it io n o f ¯ a n d t a kin g in t o a c c o u n t t h a t S ( ui; ® ) = S ( vi; ®) = [1 ; n] fo r 1 · i · n, we h a ve S[ui; ¯] = S ( ui; ¯ ) [ f¯ ( ui ) g = ³Sl k=1 S ³ uf1(i); ® ´ © n( k ¡ 1 ) ´ [ f¯ ( ui ) g = = [1 ; n ¢ l] [ fn ¢ l + 1 g = [1 ; n ¢ l + 1 ] fo r 1 · i · n, S[vj ; ¯] = S ( vj ; ® ) [ f¯ ( vj ) g = [1 ; n] [ fn + 1 g = [1 ; n + 1 ] fo r 1 · j · n, a n d S[vj ; ¯] = S ( vj; ¯ ) [ f¯ ( vj ) g = ³ S ³ vf1(j); ® ´ © n ¢ f2 ( j ) ´ [ f¯ ( vj ) g = = [1 + n ¢ f2 ( j ) ; n + n ¢ f2 ( j ) ] [ fn ¢ f2 ( j ) g = [n ¢ f2 ( j ) ; n + n ¢ f2 ( j ) ] fo r n + 1 · j · n ¢ l. P r oof: Fir s t o f a ll le t u s c o n s id e r t h e c a s e l = 1 . B y Th e o r e m 5 , we o b t a in w¿ ( Kn;n ) = Â00 ( Kn;n ) = n + 2 fo r a n y n 2 N . 3 2 Interval Total Colorings of Complete Multipartite Graphs and Hypercubes Th is s h o ws t h a t ¯ is a n in t e r va l t o t a l ( n¢l+1 ) -c o lo r in g o f Kn;n¢l. Th u s , w¿ ( Kn;n¢l ) · n¢l+1 . On t h e o t h e r h a n d , b y Th e o r e m 2 , w¿ ( Kn;n¢l ) ¸ Â00 ( Kn;n¢l ) = n ¢ l + 1 fo r l ¸ 2 a n d h e n c e , w¿ ( Kn;n¢l ) =  00 ( Kn;n¢l ) . N e xt , we s h o w t h a t t h e d i®e r e n c e b e t we e n w¿ ( Km;n ) a n d  00 ( Km;n ) fo r s o m e m a n d n c a n b e a r b it r a r ily la r g e . T heor em 9: F or any l 2 N , there exists a graph G such that G 2 T and w¿ ( G) ¡Â00 ( G ) ¸ l. 2 n + 1 . B y Th e o r e m 4 , we h a ve Kn+l;2n 2 T . W e n o w s h o w t h a t w¿ ( Kn+l;2n ) ¸ 2 n + 1 + l. S u p p o s e , t o t h e c o n t r a r y, t h a t Kn+l;2n h a s a n in t e r va l t o t a l t-c o lo r in g ®, wh e r e 2 n + 1 · t · 2 n + l. L e t u s c o n s id e r S[v; ®] fo r a n y v 2 V ( Kn+l;2n ) . It is e a s y t o s e e t h a t [t ¡ n¡l; n + l + 1 ] µ S[v; ®] fo r a n y v 2 V ( Kn+l;2n ) . S in c e t · 2 n + l, we h a ve [n; n + l + 1 ] µ S[v; ®] fo r a n y v 2 V ( Kn+l;2n ) . Th is im p lie s t h a t fo r e a c h c 2 [n; n + l + 1 ], t h e r e a r e n ¡ l ve r t ic e s in Y c o lo r e d b y c. On t h e o t h e r h a n d , s in c e jY j = 2 n, we h a ve 2 n ¸ ( l + 2 ) ( n ¡ l ) , wh ic h c o n t r a d ic t s t h e e qu a lit y n = l + 3 . Th is s h o ws t h a t w¿ ( Kn+l;2n ) ¸ 2 n+1 +l. W e t a ke G = Kn+l;2n. H e n c e , w¿ ( G) ¡Â00 ( G) ¸ l. N o w we c o n s id e r in t e r va l t o t a l c o lo r in g s o f c o m p le t e r-p a r t it e g r a p h s wit h n ve r t ic e s in e a c h p a r t . T heor em 10: If r = 2 or r is even and n is odd, then Kn;:::;n 2 T and w¿ ( Kn;:::;n ) · ³ 3 2 r ¡ 2 ´ n + 2 . N o w we a s s u m e t h a t r is e ve n a n d n is o d d . Cle a r ly, fo r t h e p r o o f o f t h e t h e o r e m , it s u ± c e s t o p r o ve t h a t Kn;:::;n h a s a n in t e r va l t o t a l ³³ 3 2 r ¡ 2 ´ n + 2 ´ -c o lo r in g . L e t V ( Kn;:::;n ) = n v (i) j j 1 · i · r; 1 · j · n o a n d E ( Kn;:::;n ) = n v(i)p v (j) q j 1 · i < j · r; 1 · p · n; 1 · q · n o . D e ¯ n e a t o t a l c o lo r in g ® o f Kn;:::;n. Fir s t we c o lo r t h e ve r t ic e s o f t h e g r a p h a s fo llo ws : ® ³ v (1) j ´ = 1 fo r 1 · j · n a n d ® ³ v (2) j ´ = ( r ¡ 1 ) n + 2 fo r 1 · j · n, ® ³ v (i+1) j ´ = ( i ¡ 1 ) n + 1 fo r 2 · i · r 2 ¡ 1 a n d 1 · j · n, ® µ v ( r 2 +i¡1) j ¶ = ( r + i ¡ 2 ) n + 2 fo r 2 · i · r 2 ¡ 1 a n d 1 · j · n, ® ³ v (r¡1) j ´ = ³ r 2 ¡ 1 ´ n + 1 fo r 1 · j · n a n d ® ³ v (r) j ´ = ³ 3 2 r ¡ 2 ´ n + 2 fo r 1 · j · n. N e xt we c o lo r t h e e d g e s o f t h e g r a p h . Fo r e a c h e d g e v(i)p v (j) q 2 E ( Kn;:::;n ) wit h 1 · i < j · r a n d p = 1 ; : : : ; n, q = 1 ; : : : ; n, d e ¯ n e a c o lo r ® ³ v(i)p v (j) q ´ a s fo llo ws : P r oof: L e t n = l + 3 . Cle a r ly, n ¸ 4 . Co n s id e r t h e c o m p le t e b ip a r t it e g r a p h Kn+l;2n wit h b ip a r t it io n ( X; Y ) , wh e r e jXj = n + l a n d jY j = 2 n. B y Th e o r e m 2 , we h a ve Â00 ( Kn+l;2n ) = P r oof: Fir s t le t u s n o t e t h a t t h e t h e o r e m is t r u e fo r t h e c a s e r = 2 , s in c e w¿ ( Kn;n ) = Â00 ( Kn;n ) = n + 2 fo r a n y n 2 N , b y Th e o r e m 5 . P. Petrosyan and N. Khachatryan 3 3 fo r i = 1 ; : : : ; j r 4 k , j = 2 ; : : : ; r 2 , i + j · r 2 + 1 , le t ® ³ v(i)p v (j) q ´ = ( i + j ¡ 3 ) n + ( 1 + ( p + q ¡ 1 ) ( m o d n) , if p + q 6= n + 1 , n + 1 , if p + q = n + 1 ; fo r i = 2 ; : : : ; r 2 ¡ 1 , j = j r 4 k + 2 ; : : : ; r 2 , i + j ¸ r 2 + 2 , le t ® ³ v(i)p v (j) q ´ = ³ i + j + r 2 ¡ 4 ´ n + ( 1 + ( p + q ¡ 1 ) ( m o d n) , if p + q 6= n + 1 , n + 1 , if p + q = n + 1 ; fo r i = 3 ; : : : ; r 2 , j = r 2 + 1 ; : : : ; r ¡ 2 , j ¡ i · r 2 ¡ 2 , le t ® ³ v(i)p v (j) q ´ = ³ r 2 + j ¡ i ¡ 1 ´ n + ( 1 + ( p + q ¡ 1 ) ( m o d n) , if p + q 6= n + 1 , n + 1 , if p + q = n + 1 ; fo r i = 1 ; : : : ; r 2 , j = r 2 + 1 ; : : : ; r, j ¡ i ¸ r 2 , le t ® ³ v(i)p v (j) q ´ = ( j ¡ i ¡ 1 ) n + ( 1 + ( p + q ¡ 1 ) ( m o d n) , if p + q 6= n + 1 , n + 1 , if p + q = n + 1 ; fo r i = 2 ; : : : ; 1 + j r¡2 4 k , j = r 2 + 1 ; : : : ; r 2 + j r¡2 4 k , j ¡ i = r 2 ¡ 1 , le t ® ³ v(i)p v (j) q ´ = ( 2 i ¡ 3 ) n + ( 1 + ( p + q ¡ 1 ) ( m o d n) , if p + q 6= n + 1 , n + 1 , if p + q = n + 1 ; fo r i = j r¡2 4 k + 2 ; : : : ; r 2 , j = r 2 + 1 + j r¡2 4 k ; : : : ; r ¡ 1 , j ¡ i = r 2 ¡ 1 , le t ® ³ v(i)p v (j) q ´ = ( i + j ¡ 3 ) n + ( 1 + ( p + q ¡ 1 ) ( m o d n) , if p + q 6= n + 1 , n + 1 , if p + q = n + 1 ; fo r i = r 2 + 1 ; : : : ; r 2 + j r 4 k ¡ 1 , j = r 2 + 2 ; : : : ; r ¡ 2 , i + j · 3 2 r ¡ 1 , le t ® ³ v(i)p v (j) q ´ = ( i + j ¡ r ¡ 1 ) n + ( 1 + ( p + q ¡ 1 ) ( m o d n) , if p + q 6= n + 1 , n + 1 , if p + q = n + 1 ; fo r i = r 2 + 1 ; : : : ; r ¡ 1 , j = r 2 + j r 4 k + 1 ; : : : ; r, i + j ¸ 3 2 r, le t ® ³ v(i)p v (j) q ´ = ³ i + j ¡ r 2 ¡ 2 ´ n + ( 1 + ( p + q ¡ 1 ) ( m o d n) , if p + q 6= n + 1 , n + 1 , if p + q = n + 1 . L e t u s p r o ve t h a t ® is a n in t e r va l t o t a l ³³ 3 2 r ¡ 2 ´ n + 2 ´ -c o lo r in g o f Kn;:::;n. Fir s t we s h o w t h a t fo r e a c h c 2 h 1 ; ³ 3 2 r ¡ 2 ´ n + 2 i , t h e r e is ve 2 V E ( Kn;:::;n ) wit h ®( ve) = c. Co n s id e r t h e ve r t ic e s v (1) 1 a n d v (r) 1 . B y t h e d e ¯ n it io n o f ®, we h a ve S h v (1) 1 ; ® i = S ³ v (1) 1 ; ® ´ [ n ® ³ v (1) 1 ´o = ³Sr¡1 l=1 ( [2 ; n + 1 ] © ( l ¡ 1 ) n) ´ [ f 1 g = = [2 ; ( r ¡ 1 ) n + 1 ] [ f 1 g = [1 ; ( r ¡ 1 ) n + 1 ] a n d S h v (r) 1 ; ® i = S ³ v (r) 1 ; ® ´ [ n ® ³ v (r) 1 ´o = µS 3 2 r¡2 l= r 2 ( [2 ; n + 1 ] © ( l ¡ 1 ) n) ¶ [ n³ 3 2 r ¡ 2 ´ n + 2 o = = h³ r 2 ¡ 1 ´ n + 2 ; ³ 3 2 r ¡ 2 ´ n + 1 i [ n³ 3 2 r ¡ 2 ´ n + 2 o = h³ r 2 ¡ 1 ´ n + 2 ; ³ 3 2 r ¡ 2 ´ n + 2 i . 3 4 Interval Total Colorings of Complete Multipartite Graphs and Hypercubes It is s t r a ig h t fo r wa r d t o c h e c k t h a t S h v (1) 1 ; ® i [ S h v (r) 1 ; ® i = h 1 ; ³ 3 2 r ¡ 2 ´ n + 2 i , s o fo r e a c h c 2 h 1 ; ³ 3 2 r ¡ 2 ´ n + 2 i , t h e r e is ve 2 V E ( Kn;:::;n ) wit h ®( ve) = c. N e xt we s h o w t h a t t h e e d g e s in c id e n t t o e a c h ve r t e x o f Kn;:::;n t o g e t h e r wit h t h is ve r t e x a r e c o lo r e d b y ( r ¡ 1 ) n + 1 c o n s e c u t ive c o lo r s . L e t v (i) j 2 V ( Kn;:::;n ) , wh e r e 1 · i · r, 1 · j · n. Case 1. 1 · i · 2 , 1 · j · n. B y t h e d e ¯ n it io n o f ®, we h a ve S h v (1) j ; ® i = S ³ v (1) j ; ® ´ [ n ® ³ v (1) j ´o = ³Sr¡1 l=1 ( [2 ; n + 1 ] © ( l ¡ 1 ) n) ´ [ f 1 g = = [2 ; ( r ¡ 1 ) n + 1 ] [ f1 g = [1 ; ( r ¡ 1 ) n + 1 ] a n d S h v (2) j ; ® i = S ³ v (2) j ; ® ´ [ n ® ³ v (2) j ´o = ³Sr¡1 l=1 ( [2 ; n + 1 ] © ( l ¡ 1 ) n) ´ [ f ( r ¡ 1 ) n + 2 g = = [2 ; ( r ¡ 1 ) n + 1 ] [ f ( r ¡ 1 ) n + 2 g = [2 ; ( r ¡ 1 ) n + 2 ]. Case 2. 3 · i · r 2 , 1 · j · n. B y t h e d e ¯ n it io n o f ®, we h a ve S h v (i) j ; ® i = S ³ v (i) j ; ® ´ [ n ® ³ v (i) j ´o = ³Sr¡3+i l=i¡1 ( [2 ; n + 1 ] © ( l ¡ 1 ) n) ´ [ f ( i ¡ 2 ) n + 1 g = = [( i ¡ 2 ) n + 2 ; ( r ¡ 3 + i) n + 1 ] [ f ( i ¡ 2 ) n + 1 g = [( i ¡ 2 ) n + 1 ; ( r ¡ 3 + i ) n + 1 ]. Case 3. r 2 + 1 · i · r ¡ 2 , 1 · j · n. B y t h e d e ¯ n it io n o f ®, we h a ve S h v (i) j ; ® i = S ³ v (i) j ; ® ´ [ n ® ³ v (i) j ´o = µS r 2 ¡1+i l=i¡ r 2 +1 ( [2 ; n + 1 ] © ( l ¡ 1 ) n) ¶ [ n³ r 2 + i ¡ 1 ´ n + 2 o = h³ i ¡ r 2 ´ n + 2 ; ³ r 2 + i ¡ 1 ´ n + 1 i [ n³ r 2 + i ¡ 1 ´ n + 2 o = h³ i ¡ r 2 ´ n + 2 ; ³ r 2 + i ¡ 1 ´ n + 2 i . Case 4. r ¡ 1 · i · r; 1 · j · n. B y t h e d e ¯ n it io n o f ®, we h a ve S h v (r¡1) j ; ® i = S ³ v (r¡1) j ; ® ´ [ n ® ³ v (r¡1) j ´o = µS 3 2 r¡2 l= r 2 ( [2 ; n + 1 ] © ( l ¡ 1 ) n) ¶ [ n³ r 2 ¡ 1 ´ n + 1 o = h³ r 2 ¡ 1 ´ n + 2 ; ³ 3 2 r ¡ 2 ´ n + 1 i [ n³ r 2 ¡ 1 ´ n + 1 o = h³ r 2 ¡ 1 ´ n + 1 ; ³ 3 2 r ¡ 2 ´ n + 1 i a n d S h v (r) j ; ® i = S ³ v (r) j ; ® ´ [ n ® ³ v (r) j ´o = µS 3 2 r¡2 l= r 2 ( [2 ; n + 1 ] © ( l ¡ 1 ) n) ¶ [ n³ 3 2 r ¡ 2 ´ n + 2 o = h³ r 2 ¡ 1 ´ n + 2 ; ³ 3 2 r ¡ 2 ´ n + 1 i [ n³ 3 2 r ¡ 2 ´ n + 2 o = h³ r 2 ¡ 1 ´ n + 2 ; ³ 3 2 r ¡ 2 ´ n + 2 i . Th is s h o ws t h a t ® is a n in t e r va l t o t a l ³³ 3 2 r ¡ 2 ´ n + 2 ´ -c o lo r in g o f Kn;:::;n; t h u s , Kn;:::;n 2 T a n d w¿ ( Kn;:::;n ) · ³ 3 2 r ¡ 2 ´ n + 2 . N o t e t h a t t h e u p p e r b o u n d in Th e o r e m 1 0 is s h a r p wh e n r = 2 o r n = 1 . A ls o , b y Th e o r e m 1 0 , we h a ve t h a t if r = 2 o r r is e ve n a n d n is o d d , t h e n Kn;:::;n 2 T ; o t h e r wis e , b y Th e o r e m 3 a n d t a kin g in t o a c c o u n t t h a t Kn;:::;n is a n ( r ¡ 1 ) n-r e g u la r g r a p h , we h a ve Kn;:::;n 2 T a n d w¿ ( Kn;:::;n ) = Â00 ( Kn;:::;n ) = ( r ¡ 1 ) n + 1 . Ou r n e xt r e s u lt g ive s a lo we r b o u n d fo r W¿ ( Kn;:::;n ) wh e n n ¢ r is e ve n . T heor em 11: If r ¸ 2 ; n 2 N and n ¢ r is even, then W¿ ( Kn;:::;n ) ¸ ³ 3 2 r ¡ 1 ´ n + 1 . P. Petrosyan and N. Khachatryan 3 5 n v (i) j j 1 · i · r; 1 · j · n o a n d E ( Kn;:::;n ) = n v(i)p v (j) q j 1 · i < j · r; 1 · p · n; 1 · q · n o . D e ¯ n e a t o t a l c o lo r in g ® o f Kn;:::;n. Fir s t we c o lo r t h e ve r t ic e s o f t h e g r a p h a s fo llo ws : ® ³ v (1) j ´ = j fo r 1 · j · n a n d ® ³ v (2) j ´ = ( r ¡ 1 ) n + 1 + j fo r 1 · j · n, ® ³ v (i+1) j ´ = ( i ¡ 1 ) n + j fo r 2 · i · r 2 ¡ 1 a n d 1 · j · n, ® µ v ( r 2 +i¡1) j ¶ = ( r + i ¡ 2 ) n + 1 + j fo r 2 · i · r 2 ¡ 1 a n d 1 · j · n, ® ³ v (r¡1) j ´ = ³ r 2 ¡ 1 ´ n + j fo r 1 · j · n a n d ® ³ v (r) j ´ = ³ 3 2 r ¡ 2 ´ n + 1 + j fo r 1 · j · n. N e xt we c o lo r t h e e d g e s o f t h e g r a p h . Fo r e a c h e d g e v(i)p v (j) q 2 E ( Kn;:::;n ) wit h 1 · i < j · r a n d p = 1 ; : : : ; n, q = 1 ; : : : ; n, d e ¯ n e a c o lo r ® ³ v(i)p v (j) q ´ a s fo llo ws : fo r i = 1 ; : : : ; j r 4 k , j = 2 ; : : : ; r 2 , i + j · r 2 + 1 , le t ® ³ v(i)p v (j) q ´ = ( i + j ¡ 3 ) n + p + q; fo r i = 2 ; : : : ; r 2 ¡ 1 , j = j r 4 k + 2 ; : : : ; r 2 , i + j ¸ r 2 + 2 , le t ® ³ v(i)p v (j) q ´ = ³ i + j + r 2 ¡ 4 ´ n + p + q; fo r i = 3 ; : : : ; r 2 , j = r 2 + 1 ; : : : ; r ¡ 2 , j ¡ i · r 2 ¡ 2 , le t ® ³ v(i)p v (j) q ´ = ³ r 2 + j ¡ i ¡ 1 ´ n + p + q; fo r i = 1 ; : : : ; r 2 , j = r 2 + 1 ; : : : ; r, j ¡ i ¸ r 2 , le t ® ³ v(i)p v (j) q ´ = ( j ¡ i ¡ 1 ) n + p + q; fo r i = 2 ; : : : ; 1 + j r¡2 4 k , j = r 2 + 1 ; : : : ; r 2 + j r¡2 4 k , j ¡ i = r 2 ¡ 1 , le t ® ³ v(i)p v (j) q ´ = ( 2 i ¡ 3 ) n + p + q; fo r i = j r¡2 4 k + 2 ; : : : ; r 2 , j = r 2 + 1 + j r¡2 4 k ; : : : ; r ¡ 1 , j ¡ i = r 2 ¡ 1 , le t ® ³ v(i)p v (j) q ´ = ( i + j ¡ 3 ) n + p + q; fo r i = r 2 + 1 ; : : : ; r 2 + j r 4 k ¡ 1 , j = r 2 + 2 ; : : : ; r ¡ 2 , i + j · 3 2 r ¡ 1 , le t ® ³ v(i)p v (j) q ´ = ( i + j ¡ r ¡ 1 ) n + p + q; fo r i = r 2 + 1 ; : : : ; r ¡ 1 , j = r 2 + j r 4 k + 1 ; : : : ; r, i + j ¸ 3 2 r, le t P r oof: W e c o n s id e r t wo c a s e s . Case 1: r is e ve n . L e t V ( Kn;:::;n ) = 3 6 Interval Total Colorings of Complete Multipartite Graphs and Hypercubes ® ³ v(i)p v (j) q ´ = ³ i + j ¡ r 2 ¡ 2 ´ n + p + q. L e t u s p r o ve t h a t ® is a n in t e r va l t o t a l ³³ 3 2 r ¡ 1 ´ n + 1 ´ -c o lo r in g o f Kn;:::;n. Fir s t we s h o w t h a t fo r e a c h c 2 h 1 ; ³ 3 2 r ¡ 1 ´ n + 1 i , t h e r e is ve 2 V E ( Kn;:::;n ) wit h ®( ve) = c. Co n s id e r t h e ve r t ic e s v (1) 1 ; : : : ; v (1) n a n d v (r) 1 ; : : : ; v (r) n . B y t h e d e ¯ n it io n o f ®, fo r 1 · j · n, we h a ve S h v (1) j ; ® i = S ³ v (1) j ; ® ´ [ n ® ³ v (1) j ´o = ³Sr¡1 l=1 ( [j + 1 ; j + n] © ( l ¡ 1 ) n) ´ [ fjg = = [j + 1 ; ( r ¡ 1 ) n + j] [ fjg = [j; ( r ¡ 1 ) n + j] a n d S h v (r) j ; ® i = S ³ v (r) j ; ® ´ [ n ® ³ v (r) j ´o = = µS 3 2 r¡2 l= r 2 ( [j + 1 ; j + n] © ( l ¡ 1 ) n) ¶ [ n³ 3 2 r ¡ 2 ´ n + 1 + j o = = h³ r 2 ¡ 1 ´ n + 1 + j; ³ 3 2 r ¡ 2 ´ n + j i [ n³ 3 2 r ¡ 2 ´ n + 1 + j o = = h³ r 2 ¡ 1 ´ n + 1 + j; ³ 3 2 r ¡ 2 ´ n + 1 + j i . L e t C = Sn j=1 S h v (1) j ; ® i a n d C = Sn j=1 S h v (r) j ; ® i . It is s t r a ig h t fo r wa r d t o c h e c k t h a t C [ C = h 1 ; ³ 3 2 r ¡ 1 ´ n + 1 i , s o fo r e a c h c 2 h 1 ; ³ 3 2 k ¡ 1 ´ n + 1 i , t h e r e is ve 2 V E ( Kn;:::;n ) wit h ®( ve) = c. N e xt we s h o w t h a t t h e e d g e s in c id e n t t o e a c h ve r t e x o f Kn;:::;n t o g e t h e r wit h t h is ve r t e x a r e c o lo r e d b y ( r ¡ 1 ) n + 1 c o n s e c u t ive c o lo r s . L e t v (i) j 2 V ( Kn;:::;n ) , wh e r e 1 · i · r, 1 · j · n. Subcase 1.1. 1 · i · 2 , 1 · j · n. B y t h e d e ¯ n it io n o f ®, we h a ve S h v (1) j ; ® i = S ³ v (1) j ; ® ´ [ n ® ³ v (1) j ´o = ³Sr¡1 l=1 ( [j + 1 ; j + n] © ( l ¡ 1 ) n) ´ [ fjg = = [j + 1 ; ( r ¡ 1 ) n + j] [ fjg = [j; ( r ¡ 1 ) n + j] a n d S h v (2) j ; ® i = S ³ v (2) j ; ® ´ [ n ® ³ v (2) j ´o = ³Sr¡1 l=1 ( [j + 1 ; j + n] © ( l ¡ 1 ) n) ´ [f ( r¡ 1 ) n+1 +jg = = [j + 1 ; ( r ¡ 1 ) n + 1 + j]. Subcase 1.2. 3 · i · r 2 , 1 · j · n. B y t h e d e ¯ n it io n o f ®, we h a ve S h v (i) j ; ® i = S ³ v (i) j ; ® ´ [ n ® ³ v (i) j ´o = ³Sr¡3+i l=i¡1 ( [j + 1 ; j + n] © ( l ¡ 1 ) n) ´ [ f( i ¡ 2 ) n + jg = = [( i ¡ 2 ) n + 1 + j; ( r ¡ 3 + i ) n + j] [ f ( i ¡ 2 ) n + jg = [( i ¡ 2 ) n + j; ( r ¡ 3 + i ) n + j]. Subcase 1.3. r 2 + 1 · i · r ¡ 2 , 1 · j · n. B y t h e d e ¯ n it io n o f ®, we h a ve S h v (i) j ; ® i = S ³ v (i) j ; ® ´ [ n ® ³ v (i) j ´o = = µS r 2 ¡1+i l=i¡ r 2 +1 ( [j + 1 ; j + n] © ( l ¡ 1 ) n) ¶ [ n³ r 2 + i ¡ 1 ´ n + 1 + j o = = h³ i ¡ r 2 ´ n + 1 + j; ³ r 2 + i ¡ 1 ´ n + j i [ n³ r 2 + i ¡ 1 ´ n + 1 + j o = h³ i ¡ r 2 ´ n + 1 + j; ³ r 2 + i ¡ 1 ´ n + 1 + j i . Subcase 1.4. r ¡ 1 · i · r; 1 · j · n. B y t h e d e ¯ n it io n o f ®, we h a ve P. Petrosyan and N. Khachatryan 3 7 S h v (r¡1) j ; ® i = S ³ v (r¡1) j ; ® ´ [ n ® ³ v (r¡1) j ´o = µS 3 2 r¡2 l= r 2 ( [j + 1 ; j + n] © ( l ¡ 1 ) n ) ¶ [ n³ r 2 ¡ 1 ´ n + j o = h³ r 2 ¡ 1 ´ n + 1 + j; ³ 3 2 r ¡ 2 ´ n + j i [ n³ r 2 ¡ 1 ´ n + j o = h³ r 2 ¡ 1 ´ n + j; ³ 3 2 r ¡ 2 ´ n + j i a n d S h v (r) j ; ® i = S ³ v (r) j ; ® ´ [ n ® ³ v (r) j ´o = µS 3 2 r¡2 l= r 2 ( [j + 1 ; j + n] © ( l ¡ 1 ) n) ¶ [ n³ 3 2 r ¡ 2 ´ n + 1 + j o = h³ r 2 ¡ 1 ´ n + 1 + j; ³ 3 2 r ¡ 2 ´ n + j i [ n³ 3 2 r ¡ 2 ´ n + 1 + j o = h³ r 2 ¡ 1 ´ n + 1 + j; ³ 3 2 r ¡ 2 ´ n + 1 + j i . Th is s h o ws t h a t ® is a n in t e r va l t o t a l ³³ 3 2 r ¡ 1 ´ n + 1 ´ -c o lo r in g o f Kn;:::;n; t h u s , W¿ ( Kn;:::;n ) ¸ ³ 3 2 r ¡ 1 ´ n + 1 fo r e ve n r ¸ 2 . Case 2: n is e ve n . L e t n = 2 m, m 2 N . L e t Si = n u (i) 1 ; : : : ; u (i) m ; u (r+i) 1 ; : : : ; u (r+i) m o ( 1 · i · r ) b e t h e r in d e p e n d e n t s e t s o f ve r t ic e s o f Kn;:::;n. Fo r i = 1 ; : : : ; 2 r, d e ¯ n e t h e s e t Ui a s fo llo ws : Ui = n u (i) 1 ; : : : ; u (i) m o . Cle a r ly, V ( Kn;:::;n ) = S2r i=1 Ui. Fo r 1 · i < j · 2 r, d e ¯ n e ( Ui; Uj ) a s t h e s e t o f a ll e d g e s b e t we e n Ui a n d Uj . It is e a s y t o s e e t h a t fo r 1 · i < j · 2 r, j ( Ui; Uj ) j = m2 e xc e p t fo r j( Ui; Ur+i ) j = 0 wh e n e ve r i = 1 ; : : : ; r. If we c o n s id e r t h e s e t s Ui a s t h e ve r t ic e s a n d t h e s e t s ( Ui; Uj ) a s t h e e d g e s , t h e n we o b t a in t h a t Kn;:::;n is is o m o r p h ic t o t h e g r a p h K2r ¡ F , wh e r e F is a p e r fe c t m a t c h in g o f K2r. N o w we d e ¯ n e a t o t a l c o lo r in g ¯ o f t h e g r a p h Kn;:::;n. Fir s t we c o lo r t h e ve r t ic e s o f t h e g r a p h a s fo llo ws : ¯ ³ u (1) j ´ = j fo r 1 · j · m a n d ¯ ³ u (2) j ´ = ( 2 r ¡ 2 ) m + 1 + j fo r 1 · j · m, ¯ ³ u (i+1) j ´ = ( i ¡ 1 ) m + j fo r 2 · i · r ¡ 1 a n d 1 · j · m, ¯ ³ u (r+i¡1) j ´ = ( 2 r + i ¡ 3 ) m + 1 + j fo r 2 · i · r ¡ 1 a n d 1 · j · m, ¯ ³ u (2r¡1) j ´ = ( r ¡ 1 ) m + j fo r 1 · j · m a n d ¯ ³ u (2r) j ´ = ( 3 r ¡ 3 ) m + 1 + j fo r 1 · j · m. N e xt we c o lo r t h e e d g e s o f t h e g r a p h . Fo r e a c h e d g e u(i)p u (j) q 2 E ( Kn;:::;n ) wit h 1 · i < j · 2 r a n d p = 1 ; : : : ; m, q = 1 ; : : : ; m, d e ¯ n e a c o lo r ¯ ³ u(i)p u (j) q ´ a s fo llo ws : fo r i = 1 ; : : : ; j r 2 k , j = 2 ; : : : ; r, i + j · r + 1 , le t ¯ ³ u(i)p u (j) q ´ = ( i + j ¡ 3 ) m + p + q; fo r i = 2 ; : : : ; r ¡ 1 , j = j r 2 k + 2 ; : : : ; r, i + j ¸ r + 2 , le t ¯ ³ u(i)p u (j) q ´ = ( i + j + r ¡ 5 ) m + p + q; fo r i = 3 ; : : : ; r, j = r + 1 ; : : : ; 2 r ¡ 2 , j ¡ i · r ¡ 2 , le t ¯ ³ u(i)p u (j) q ´ = ( r + j ¡ i ¡ 2 ) m + p + q; fo r i = 1 ; : : : ; r ¡ 1 , j = r + 2 ; : : : ; 2 r, j ¡ i ¸ r + 1 , le t ¯ ³ u(i)p u (j) q ´ = ( j ¡ i ¡ 2 ) m + p + q; 3 8 Interval Total Colorings of Complete Multipartite Graphs and Hypercubes fo r i = 2 ; : : : ; 1 + j r¡1 2 k , j = r + 1 ; : : : ; r + j r¡1 2 k , j ¡ i = r ¡ 1 , le t ¯ ³ u(i)p u (j) q ´ = ( 2 i ¡ 3 ) m + p + q; fo r i = j r¡1 2 k + 2 ; : : : ; r, j = r + 1 + j r¡1 2 k ; : : : ; 2 r ¡ 1 , j ¡ i = r ¡ 1 , le t ¯ ³ u(i)p u (j) q ´ = ( i + j ¡ 4 ) m + p + q; fo r i = r + 1 ; : : : ; r + j r 2 k ¡ 1 , j = r + 2 ; : : : ; 2 r ¡ 2 , i + j · 3 r ¡ 1 , le t ¯ ³ u(i)p u (j) q ´ = ( i + j ¡ 2 r ¡ 1 ) m + p + q; fo r i = r + 1 ; : : : ; 2 r ¡ 1 , j = r + j r 2 k + 1 ; : : : ; 2 r, i + j ¸ 3 r, le t ¯ ³ u(i)p u (j) q ´ = ( i + j ¡ r ¡ 3 ) m + p + q. L e t u s p r o ve t h a t ¯ is a n in t e r va l t o t a l ³³ 3 2 r ¡ 1 ´ n + 1 ´ -c o lo r in g o f t h e g r a p h Kn;:::;n. Fir s t we s h o w t h a t fo r e a c h c 2 h 1 ; ³ 3 2 r ¡ 1 ´ n + 1 i , t h e r e is ve 2 V E ( Kn;:::;n ) wit h ¯ ( ve) = c. Co n s id e r t h e ve r t ic e s u (1) 1 ; : : : ; u (1) m a n d u (2r) 1 ; : : : ; u (2r) m . B y t h e d e ¯ n it io n o f ¯, fo r 1 · j · m, we h a ve S h u (1) j ; ¯ i = S ³ u (1) j ; ¯ ´ [ n ¯ ³ u (1) j ´o = ³S2r¡2 l=1 ( [j + 1 ; j + m] © ( l ¡ 1 ) m ) ´ [ fjg = [j + 1 ; ( 2 r ¡ 2 ) m + j] [ fjg = [j; ( 2 r ¡ 2 ) m + j] a n d S h u (2r) j ; ¯ i = S ³ u (2r) j ; ¯ ´ [ n ¯ ³ u (2r) j ´o = ³S3r¡3 l=r ( [j + 1 ; j + m] © ( l ¡ 1 ) m ) ´ [f ( 3 r ¡ 3 ) m + 1 +jg = [( r¡ 1 ) m+1 +j; ( 3 r¡ 3 ) m+j][f ( 3 r¡ 3 ) m+1 +jg = [( r¡ 1 ) m+1 +j; ( 3 r¡ 3 ) m+1 +j]. L e t ~C = Sm j=1 S h u (1) j ; ¯ i a n d ~ ~C = Sm j=1 S h u (2r) j ; ¯ i . It is s t r a ig h t fo r wa r d t o c h e c k t h a t ~C [ ~ ~C = h 1 ; ³ 3 2 r ¡ 1 ´ n + 1 i , s o fo r e a c h c 2 h 1 ; ³ 3 2 r ¡ 1 ´ n + 1 i , t h e r e is ve 2 V E ( Kn;:::;n ) wit h ¯ ( ve) = c. N e xt we s h o w t h a t t h e e d g e s in c id e n t t o e a c h ve r t e x o f Kn;:::;n t o g e t h e r wit h t h is ve r t e x a r e c o lo r e d b y ( r ¡ 1 ) n + 1 c o n s e c u t ive c o lo r s . L e t v (i) j 2 V ( Kn;:::;n ) , wh e r e 1 · i · 2 r, 1 · j · m. Subcase 2.1. 1 · i · 2 , 1 · j · m. B y t h e d e ¯ n it io n o f ¯, we h a ve S h v (1) j ; ¯ i = S ³ u (1) j ; ¯ ´ [ n ¯ ³ u (1) j ´o = ³S2r¡2 l=1 ( [j + 1 ; j + m] © ( l ¡ 1 ) m ) ´ [ fjg = [j + 1 ; ( 2 r ¡ 2 ) m + j] [ fjg = [j; ( 2 r ¡ 2 ) m + j] a n d S h u (2) j ; ¯ i = S ³ u (2) j ; ¯ ´ [ n ¯ ³ u (2) j ´o = ³S2r¡2 l=1 ( [j + 1 ; j + m] © ( l ¡ 1 ) m ) ´ [ f ( 2 r ¡ 2 ) m + 1 + jg = [j + 1 ; ( 2 r ¡ 2 ) m + j] [ f ( 2 r ¡ 2 ) m + 1 + jg = [j + 1 ; ( 2 r ¡ 2 ) m + 1 + j]. Subcase 2.2. 3 · i · r, 1 · j · m. B y t h e d e ¯ n it io n o f ¯, we h a ve P. Petrosyan and N. Khachatryan 3 9 S h u (i) j ; ¯ i = S ³ u (i) j ; ¯ ´ [ n ¯ ³ u (i) j ´o = ³S2r¡4+i l=i¡1 ( [j + 1 ; j + m] © ( l ¡ 1 ) m ) ´ [f ( i¡ 2 ) m+jg = [( i ¡ 2 ) m + 1 + j; ( 2 r ¡ 4 + i ) m + j] [ f ( i ¡ 2 ) m + jg = [( i ¡ 2 ) m + j; ( 2 r ¡ 4 + i ) m + j]. Subcase 2.3. r + 1 · i · 2 r ¡ 2 , 1 · j · m. B y t h e d e ¯ n it io n o f ¯, we h a ve S h u (i) j ; ¯ i = S ³ u (i) j ; ¯ ´ [ n ¯ ³ u (i) j ´o = ³Sr¡2+i l=i¡r+1 ( [j + 1 ; j + m] © ( l ¡ 1 ) m) ´ [ f ( r + i ¡ 2 ) m + 1 + jg = [( i ¡ r ) m + 1 + j; ( r + i ¡ 2 ) m + j] [ f ( r + i ¡ 2 ) m + 1 + jg = [( i ¡ r ) m + 1 + j; ( r + i ¡ 2 ) m + 1 + j]. Subcase 2.4. 2 r ¡ 1 · i · 2 r; 1 · j · m. B y t h e d e ¯ n it io n o f ¯, we h a ve S h u (2r¡1) j ; ¯ i = S ³ u (2r¡1) j ; ¯ ´ [ n ¯ ³ u (2r¡1) j ´o = ³S3r¡3 l=r ( [j + 1 ; j + m] © ( l ¡ 1 ) m ) ´ [ f ( r ¡ 1 ) m + jg = [( r ¡ 1 ) m + 1 + j; ( 3 r ¡ 3 ) m + j] [ f ( r ¡ 1 ) m + jg = [( r ¡ 1 ) m + j; ( 3 r ¡ 3 ) m + j] a n d S h u (2r) j ; ¯ i = S ³ u (2r) j ; ¯ ´ [ n ¯ ³ u (2r) j ´o = ³S3r¡3 l=r ( [j + 1 ; j + m] © ( l ¡ 1 ) m ) ´ [f ( 3 r ¡ 3 ) m + 1 +jg = [( r¡ 1 ) m+1 +j; ( 3 r¡ 3 ) m+j][f ( 3 r¡ 3 ) m+1 +jg = [( r¡ 1 ) m+1 +j; ( 3 r¡ 3 ) m+1 +j]. Th is s h o ws t h a t ¯ is a n in t e r va l t o t a l ³³ 3 2 r ¡ 1 ´ n + 1 ´ -c o lo r in g o f Kn;:::;n; t h u s , W¿ ( Kn;:::;n ) ¸ ³ 3 2 r ¡ 1 ´ n + 1 fo r e ve n n ¸ 2 . 3 . In t e r va l To t a l Co lo r in g s o f H yp e r c u b e s In [7 ], t h e ¯ r s t a u t h o r in ve s t ig a t e d in t e r va l c o lo r in g s o f h yp e r c u b e s Qn. In p a r t ic u la r , h e p r o ve d t h a t Qn 2 N a n d w ( Qn ) = n, W ( Qn ) ¸ n(n+1)2 fo r a n y n 2 N . In t h e s a m e p a p e r h e a ls o c o n je c t u r e d t h a t W ( Qn ) = n(n+1) 2 fo r a n y n 2 N . In [9 ], t h e a u t h o r s c o n ¯ r m e d t h is c o n je c t u r e . H e r e , we p r o ve t h a t W¿ ( Qn ) = (n+1)(n+2) 2 fo r a n y n 2 N . T heor em 12: If n 2 N , then W¿ ( Qn ) = (n+1)(n+2)2 . 2 fo r a n y n 2 N , b y Th e o r e m 7 . Fo r t h e p r o o f o f t h e t h e o r e m , it s u ± c e s t o s h o w t h a t W¿ ( Qn ) · (n+1)(n+2)2 fo r a n y n 2 N . L e t ' b e a n in t e r va l t o t a l W¿ ( Qn ) -c o lo r in g o f Qn. L e t i = 0 o r 1 a n d Q (i) n+1 b e a s u b g r a p h o f t h e g r a p h Qn+1, in d u c e d b y t h e ve r t ic e s f ( i; ®2; ®3; : : : ; ®n+1 ) j ( ®2; ®3; : : : ; ®n+1 ) 2 f 0 ; 1 gng. Cle a r ly, Q(i)n+1 is is o m o r p h ic t o Qn fo r i 2 f0 ; 1 g. L e t u s d e ¯ n e a n e d g e c o lo r in g à o f t h e g r a p h Qn+1 in t h e fo llo win g wa y: (1) fo r i = 0 ; 1 a n d e ve r y e d g e ( i; ¹®) ³ i; ¹̄ ´ 2 E ³ Q (i) n+1 ´ , le t à ³ ( i; ¹® ) ³ i; ¹̄ ´´ = ' ³ ¹® ¹̄ ´ ; (2) fo r e ve r y ¹® 2 f0 ; 1 gn, le t P r oof: Fir s t o f a ll le t u s n o t e t h a t W¿ ( Qn ) ¸ (n+1)(n+2) 4 0 Interval Total Colorings of Complete Multipartite Graphs and Hypercubes à ( ( 0 ; ¹® ) ( 1 ; ¹® ) ) = ' ( ¹® ) . It is n o t d i± c u lt t o s e e t h a t à is a n in t e r va l W¿ ( Qn ) -c o lo r in g o f t h e g r a p h Qn+1. Th u s , W¿ ( Qn ) · W ( Qn+1 ) = (n+1)(n+2)2 fo r a n y n 2 N . B y Th e o r e m s 7 a n d 1 2 , we h a ve t h a t Qn h a s a n in t e r va l t o t a l t-c o lo r in g if a n d o n ly if w¿ ( Qn ) · t · W¿ ( Qn ) . Refer ences [1 ] A . S . A s r a t ia n , T.M.J. D e n le y a n d R . H a g g kvis t , B ipartite Graphs and their Applica- tions, Ca m b r id g e U n ive r s it y P r e s s , Ca m b r id g e , 1 9 9 8 . [2 ] A .S . A s r a t ia n a n d R .R . K a m a lia n , \ In t e r va l c o lo r in g s o f e d g e s o f a m u lt ig r a p h " , Appl. M ath., vo l. 5 , p p . 2 5 -3 4 , 1 9 8 7 . [3 ] M. B e h z a d , G. Ch a r t r a n d a n d J.K . Co o p e r , \ Th e c o lo u r n u m b e r s o f c o m p le t e g r a p h s " , J . L ondon M ath. Soc., vo l. 4 2 , p p . 2 2 6 -2 2 8 , 1 9 6 7 . [4 ] J. C. B e r m o n d , \ N o m b r e c h r o m a t iqu e t o t a l d u g r a p h e r -p a r t i c o m p le t " , J . L ondon M ath. Soc., vo l. 2 , n o . 9 , p p . 2 7 9 -2 8 5 , 1 9 7 4 . [5 ] P .A . P e t r o s ya n ,\ In t e r va l t o t a l c o lo r in g s o f c o m p le t e b ip a r t it e g r a p h s " , P roceedings of the CSIT Conference, Y e r e va n , p p . 8 4 -8 5 , 2 0 0 7 . [6 ] P .A . P e t r o s ya n ,\ In t e r va l t o t a l c o lo r in g s o f c e r t a in g r a p h s " , M athematical P roblems of Computer Science, vo l. 3 1 , p p . 1 2 2 -1 2 9 , 2 0 0 8 . [7 ] P . A . P e t r o s ya n , \ In t e r va l e d g e -c o lo r in g s o f c o m p le t e g r a p h s a n d n-d im e n s io n a l c u b e s " , D iscrete M ath. 310, p p . 1 5 8 0 -1 5 8 7 , 2 0 1 0 . [8 ] P . A . P e t r o s ya n a n d H . H . K h a c h a t r ia n , \ In t e r va l t o t a l c o lo r in g s o f c o m p le t e m u lt ip a r - t it e g r a p h s " , 4-th P olish Combinatorial Conference, B e d le wo , P o la n d , p . 3 5 , 2 0 1 2 . [9 ] P . A . P e t r o s ya n , H . H . K h a c h a t r ia n a n d H .G. Ta n a n ya n , \ In t e r va l e d g e -c o lo r in g s o f Ca r t e s ia n p r o d u c t s o f g r a p h s I" , D iscussiones M athematicae Graph Theory, vo l. 3 3 , n o . 3 , p p . 6 1 3 -6 3 2 , 2 0 1 3 . [1 0 ] P . A . P e t r o s ya n a n d N . A . K h a c h a t r ya n ,\ In t e r va l t o t a l c o lo r in g s o f g r a p h s wit h a s p a n - n in g s t a r " , M athematical P roblems of Computer Science, vo l. 3 2 , p p . 7 8 -8 5 , 2 0 0 9 . [1 1 ] P . A . P e t r o s ya n a n d N .A . K h a c h a t r ya n , \ U p p e r b o u n d s fo r t h e m a xim u m s p a n in in t e r va l t o t a l c o lo r in g s o f g r a p h s " , M athematical P roblems of Computer Science, vo l. 3 5 , p p . 1 9 -2 5 , 2 0 1 1 . [1 2 ] P . A . P e t r o s ya n a n d N . A . K h a c h a t r ya n , \ On in t e r va l t o t a l c o lo r in g s o f t h e Ca r t e s ia n p r o d u c t s o f g r a p h s " , P roceedings of the CSIT Conference, Y e r e va n , p p . 8 5 -8 6 , 2 0 1 3 . [1 3 ] P . A . P e t r o s ya n a n d A . S . S h a s h ikya n ,\ On in t e r va l t o t a l c o lo r in g s o f t r e e s " , M athe- matical P roblems of Computer Science, vo l. 3 2 , p p . 7 0 -7 3 , 2 0 0 9 . [1 4 ] P .A . P e t r o s ya n a n d A .S . S h a s h ikya n ,\ On in t e r va l t o t a l c o lo r in g s o f b ip a r t it e g r a p h s " , P roceedings of the CSIT Conference, Y e r e va n , p p . 9 5 -9 8 , 2 0 0 9 . [1 5 ] P .A . P e t r o s ya n a n d A .S . S h a s h ikya n , \ On in t e r va l t o t a l c o lo r in g s o f d o u b ly c o n ve x b ip a r t it e g r a p h s " , M athematical P roblems of Computer Scienc, vo l. 3 3 , p p . 5 4 -5 8 , 2 0 1 0 . P. Petrosyan and N. Khachatryan 4 1 [1 6 ] P . A . P e t r o s ya n , A . S . S h a s h ikya n a n d A .Y u . To r o s ya n , \ In t e r va l t o t a l c o lo r in g s o f b ip a r t it e g r a p h s " , P roceedings of the 9th Cologne-Twente W orkshop on Graphs and Combinatorial Optimization, Co lo g n e , Ge r m a n y, p p . 1 3 3 -1 3 6 , 2 0 1 0 . [1 7 ] P . A . P e t r o s ya n , A . S . S h a s h ikya n , A .Y u . To r o s ya n a n d N .A . K h a c h a t r ya n , \ In t e r va l t o t a l c o lo r in g s o f g r a p h s " , 6th Cracow Conference on Graph Theory "Zgorzelisko '10", Zg o r z e lis ko , P o la n d , p . 1 1 , 2 0 1 0 . [1 8 ] P .A . P e t r o s ya n a n d A .Y u . To r o s ya n ,\ In t e r va l t o t a l c o lo r in g s o f c o m p le t e g r a p h s " , P ro- ceedings of the CSIT Conference, Y e r e va n , p p . 9 9 -1 0 2 , 2 0 0 9 . [1 9 ] A .S . S h a s h ikya n ,\ On in t e r va l t o t a l c o lo r in g s o f b ip a r t it e g r a p h s " , Ma s t e r 's Th e s is , Y e r e - va n S t a t e U n ive r s it y, 2 9 p , 2 0 0 9 . [2 0 ] D .B . W e s t , Introduction to Graph Theory, P rentice-Hall, N e w Je r s e y, 1 9 9 6 . [2 1 ] H .P . Y a p , Total Colorings of Graphs, L e c t u r e N o t e s in Ma t h e m a t ic s 1 6 2 3 , S p r in g e r - V e r la g , 1 9 9 6 . Submitted 05.08.2014, accepted 27.11.2014. ÈñÇí µ³½Ù³ÏáÕÙ³ÝÇ ·ñ³ýÝ»ñÇ ¨ ÑÇå»ñËáñ³Ý³ñ¹Ý»ñÇ ÙÇç³Ï³Ûù³ÛÇÝ Édzϳï³ñ Ý»ñÏáõÙÝ»ñ ä. ä»ïñáëÛ³Ý ¨ Ü. ʳã³ïñÛ³Ý ²Ù÷á÷áõÙ G ·ñ³ýÇ Édzϳï³ñ Ý»ñÏáõÙÁ ³Û¹ ·ñ³ýÇ ³ÛÝ Ý»ñÏáõÙÝ ¿, áñÇ ¹»åùáõ٠ѳñ¨³Ý ·³·³ÃÝ»ñÁ ¨ ÏáÕ»ñÁ Ý»ñÏí³Í »Ý ï³ñµ»ñ ·áõÛÝ»ñáí ¨ ó³Ýϳó³Í ·³·³Ã ¨ Ýñ³Ý ÏÇó ÏáÕ»ñÁ ¨ë Ý»ñÏí³Í »Ý ï³ñµ»ñ ·áõÛÝ»ñáí: G ·ñ³ýÇ Édzϳï³ñ Ý»ñÏáõÙÁ 1 ; : : : ; t ·áõÛÝ»ñáí ϳÝí³Ý»Ýù ÙÇç³Ï³Ûù³ÛÇÝ Édzϳï³ñ t–Ý»ñÏáõÙ, »Ã» µáÉáñ ·áõÛÝ»ñÁ û·ï³·áñÍí»É »Ý, ¨ Ûáõñ³ù³ÝãÛáõñ v ·³·³ÃÇÝ ÏÇó ÏáÕ»ñÁ ¨ ³Û¹ ·³·³ÃÁ Ý»ñÏí³Í »Ý dG ( v ) + 1 ѳçáñ¹³Ï³Ý ·áõÛÝ»ñáí, áñï»Õ dG ( v ) -áí Ý߳ݳÏí³Í ¿ v ·³·³ÃÇ ³ëïÇ׳ÝÁ G ·ñ³ýáõÙ: ²Ûë ³ß˳ï³ÝùáõÙ ³å³óáõóíáõÙ ¿, áñ Ûáõñ³ù³ÝãÛáõñ ÏáÕÙáõÙ ÙǨÝáõÛÝ ù³Ý³ÏÇ ·³·³ÃÝ»ñ å³ñáõݳÏáÕ ÉñÇí µ³½Ù³ÏáÕÙ³ÝÇ ·ñ³ýÝ»ñÝ áõÝ»Ý ÙÇç³Ï³Ûù³ÛÇÝ Édzϳï³ñ Ý»ñÏáõÙ: ²í»ÉÇÝ, ³ß˳ï³ÝùáõÙ ïñíáõÙ »Ý áñáß ·Ý³Ñ³ï³Ï³ÝÝ»ñ ³Ûë ·ñ³ýÝ»ñÇ ÙÇç³Ï³Ûù³ÛÇÝ Édzϳï³ñ Ý»ñÏáõÙÝ»ñáõÙ Ù³ëݳÏóáÕ ·áõÛÝ»ñÇ Ýí³½³·áõÛÝ ¨ ³é³í»É³·áõÛÝ Ñݳñ³íáñ ÃíÇ Ñ³Ù³ñ: ²ß˳ï³ÝùáõÙ áõëáõÙݳëÇñíáõÙ »Ý ݳ¨ Qn ÑÇå»ñËáñ³Ý³ñ¹Ý»ñÇ ÙÇç³Ï³Ûù³ÛÇÝ Édzϳï³ñ Ý»ñÏáõÙÝ»ñ: سëݳíáñ³å»ë, ³å³óáõóíáõÙ ¿, áñ Qn (n ¸ 3 ) ÑÇå»ñËáñ³Ý³ñ¹Ý áõÝÇ ÙÇç³Ï³Ûù³ÛÇÝ Édzϳï³ñ t– Ý»ñÏáõÙ ³ÛÝ ¨ ÙdzÛÝ ³ÛÝ ¹»åùáõÙ, »ñµ n + 1 · t · (n+1)(n+2) 2 4 2 Interval Total Colorings of Complete Multipartite Graphs and Hypercubes Èíòåðâàëüíûå òîòàëüíûå ðàñêðàñêè ïîëíûx ìíîãîäîëüíûx ãðàôîâ è ãèïåðêóáîâ Ï. Ïåòðîñÿí è Í. Xà÷àòðÿí Àííîòàöèÿ Òîòàëüíîé ðàñêðàñêîé ãðàôà G íàçîâåì òàêóþ ðàñêðàñêó âåðøèí è ðåáåð ãðàôà G, ïðè êîòîðîé ñìåæíûå âåðøèíû, ñìåæíûå ðåáðà è âåðøèíû, èíöèäåíòíûå ðåáðàì, îêðàøåíû â ðàçëè÷íûå öâåòà. Èíòåðâàëüíîé òîòàëüíîé t– ðàñêðàñêîé ãðàôà G íàçîâåì òîòàëüíóþ ðàñêðàñêó ãðàôà G â öâåòà 1 ; : : : ; t ïðè êîòîðîé âñå öâåòà èñïîëüçîâàíû, è ðåáðà, èíöèäåíòíûå êàæäîé âåðøèíå v âìåñòå ñ v, îêðàøåíû â dG ( v ) + 1 ïîñëåäîâàòåëüíûx öâåòîâ, ãäå dG ( v ) - ýòî ñòåïåíü âåðøèíû v â ãðàôå G.  íàñòîÿùåé ðàáîòå äîêàçàíî, ÷òî âñå ïîëíûå ìíîãîäîëüíûå ãðàôû ñ îäèíàêîâûì êîëè÷åñòâîì âåðøèí â êàæäîé äîëå èìåþò èíòåðâàëüíóþ òîòàëüíóþ ðàñêðàñêó. Êðîìå òîãî, ïîëó÷åíû íåêîòîðûå îöåíêè íàèìåíüøåãî è íàèáîëüøåãî âîçìîæíîãî ÷èñëà öâåòîâ â èíòåðâàëüíûõ òîòàëüíûõ ðàñêðàñêàõ ýòèõ ãðàôîâ.  ðàáîòå òàêæå èññëåäîâàíû èíòåðâàëüíûå òîòàëüíûå ðàñêðàñêè ãèïåðêóáîâ Qn.  ÷àñòíîñòè, äîêàçàíî, ÷òî ãèïåðêóá Qn (n ¸ 3 ) èìååò èíòåðâàëüíóþ òîòàëüíóþ ðàñêðàñêó òîãäà è òîëüêî òîãäà, êîãäà n + 1 · t · (n+1)(n+2) 2 .