D:\FINAL_TEX\...\Viliam.DVI Mathematical Problems of Computer Science 42, 43{53, 2014. Fault-toler ant Gossip Gr aphs B ased on Wheel Gr aphs V ilya m H . H o vn a n ya n , S u r e n S . P o g h o s ya n a n d V a h a g n S . P o g h o s ya n Institute for Informatics and Automation Problems of NAS RA e-mail: williamhovnanyan@gmail.com, psuren55@yandex.ru, povahagn@gmail.com Abstract The gossip problem (telephone problem) is an information dissemination problem where each of n nodes of a communication network has a unique piece of information that must be transmitted to all the other nodes using two-way communications (tele- phone calls) between the pairs of nodes. Upon a call between the given two nodes, they exchange the whole information known to them at that moment. In this paper, we investigate the k-fault-tolerant gossip problem, which is a generalization of the gossip problem, where at most k arbitrary faults of calls are allowed. The problem is to ¯nd the minimal number of calls ¿ (n; k) needed to guarantee the spread of whole infor- mation. We constructed a k-fault-tolerant gossip scheme (sequences of calls) to ¯nd the upper bounds of ¿ (n; k), which improves the previously known results for some particular small values of n and k. Keywords: Gossip, Information dissemination, Fault-tolerant gossiping. 1 . In t r o d u c t io n Go s s ip in g is o n e o f t h e b a s ic p r o b le m s o f in fo r m a t io n d is s e m in a t io n in c o m m u n ic a t io n n e t - wo r ks . Th e g o s s ip p r o b le m ( a ls o kn o wn a s a t e le p h o n e p r o b le m ) is a t t r ib u t e d t o A . B o yd ( s e e e .g . [4 ] fo r r e vie w) , a lt h o u g h t o t h e b e s t kn o wle d g e o f t h e r e vie we r s , it wa s ¯ r s t fo r m u la t e d b y R . Ch e s t e r s a n d S . S ilve r m a n ( U n iv. o f W it wa t e r s r a n d , u n p u b lis h e d , 1 9 7 0 ) . Co n s id e r a s e t o f n p e r s o n ( n o d e s ) e a c h o f wh ic h in it ia lly kn o ws s o m e u n iqu e p ie c e o f in fo r m a t io n t h a t is u n kn o wn t o t h e o t h e r s , a n d t h e y c a n m a ke a s e qu e n c e o f t e le p h o n e c a lls t o s p r e a d t h e in fo r m a t io n . D u r in g a c a ll b e t we e n t h e g ive n t wo n o d e s , t h e y e xc h a n g e t h e wh o le in - fo r m a t io n kn o wn t o t h e m a t t h a t m o m e n t . Th e p r o b le m is t o ¯ n d t h e s e qu e n c e o f c a lls wit h a m in im u m le n g t h ( m in im a l g o s s ip s c h e m e ) , b y wh ic h a ll t h e n o d e s will kn o w a ll p ie c e s o f in fo r m a t io n ( c o m p le t e g o s s ip in g ) . It h a s b e e n s h o wn in n u m e r o u s wo r ks [1 ]{ [4 ] t h a t t h e m in im a l n u m b e r o f c a lls is 2 n ¡ 4 wh e n n ¸ 4 a n d 1 , 3 fo r n = 2 ; 3 , r e s p e c t ive ly. S in c e t h e n m a n y va r ia t io n s o f g o s s ip p r o b le m h a ve b e e n in t r o d u c e d a n d in ve s t ig a t e d ( s e e e .g . [5 ]{ [1 0 ], [1 2 ]{ [1 7 ]) . On e o f t h e n a t u r a l g e n e r a liz a t io n s o f t h is p r o b le m is t h e k-fa u lt -t o le r a n t g o s s ip p r o b le m , wh ic h a s s u m e s t h a t s o m e o f t h e c a lls in t h e c a ll s e qu e n c e c a n fa il ( d o n o t t a ke p la c e ) [1 3 ]- [1 6 ]. Th e n o d e s c a n n o t c h a n g e t h e s e qu e n c e o f t h e ir fu t u r e c a lls d e p e n d in g o n t h e c u r r e n t fa ile d c a lls . H e r e t h e a im is t o ¯ n d a m in im a l g o s s ip s c h e m e , wh ic h g u a r a n t e e s t h e fu ll e xc h a n g e o f t h e in fo r m a t io n in t h e c a s e o f a t m o s t k a r b it r a r y fa ils , r e g a r d le s s o f wh ic h t h e c a lls fa ile d . Th e g o s s ip s c h e m e s , wh ic h p r o vid e k-fa u lt -t o le r a n c e , a r e c a lle d k-fa u lt -t o le r a n t 4 3 4 4 Fault-tolerant Gossip Graphs Based on Wheel Graphs g o s s ip s c h e m e s . D e n o t e t h e m in im a l n u m b e r o f c a lls in t h e k-fa u lt -t o le r a n t m in im a l g o s s ip s c h e m e b y ¿ ( n; k ) . B e r m a n a n d H a wr ylyc z [1 4 ] o b t a in e d t h e lo we r a n d u p p e r b o u n d s fo r ¿ ( n; k ) : »µ k + 4 2 ¶ ( n ¡ 1 ) ¼ ¡ 2 §p n ¨ + 1 · ¿ ( n; k ) · ¹µ k + 3 2 ¶ ( n ¡ 1 ) º ; ( 1 ) fo r k · n ¡ 2 , a n d »µ k + 3 2 ¶ ( n ¡ 1 ) ¼ ¡ 2 §p n ¨ · ¿ ( n; k ) · ¹µ k + 3 2 ¶ ( n ¡ 1 ) º ; ( 2 ) fo r k ¸ n ¡ 2 . H a d d e d , R o y a n d S c h a ®e r [1 5 ] p r o ve d a ft e r wa r d s t h a t ¿ ( n; k ) · µ k 2 + 2 p ¶µ n ¡ 1 + n ¡ 1 2 p ¡ 1 + 2 p ¶ ; ( 3 ) wh e r e p is a n y in t e g e r b e t we e n 1 a n d lo g 2 n in c lu s ive . B y c h o o s in g p a p p r o p r ia t e ly, t h is r e s u lt im p r o ve s t h e u p p e r b o u n d s o b t a in e d b y B e r m a n a n d H a wr ylyc z fo r a lm o s t a ll k. P a r t ic u la r ly, b y c h o o s in g p = h log2 n 2 i , t h e fo llo win g b o u n d is o b t a in e d : ¿ ( n; k ) · nk 2 + O ( k p n + n lo g 2 n) . Fo r t h e s p e c ia l c a s e n = 2 p fo r s o m e in t e g e r p, H a d d a d , R o y, a n d S c h a ®e r [1 5 ] a ls o s h o we d t h a t ¿ ( n; k ) · m in ½µ» k + 1 lo g 2 n ¼ + 1 ¶ n lo g 2 n 2 ; µ¹ k + 1 lo g 2 n º + 1 ¶ n lo g 2 n 2 + ( ( k + 1 ) m o d lo g 2 n) ( 2 n ¡ 4 ) ¾ : ( 4 ) Th u s , ¿ ( n; k ) · nk 2 + O ( n lo g 2 n) , wh e n n is a p o we r o f 2 . L a t e r o n , H o u a n d S h ig e n o [1 3 ] s h o we d t h a t ¹ n ( k + 2 ) 2 º · ¿ ( n; k ) · n( n ¡ 1 ) 2 + » nk 2 ¼ : ( 5 ) S o , it h o ld s t h a t nk 2 + ( n) · ¿ ( n; k ) · nk 2 + O ( n2 ) . Th e s e b o u n d s im p r o ve t h e p r e vio u s b o u n d s fo r s m a ll n a n d s u ± c ie n t ly la r g e k. R e c e n t ly, H a s u n u m a a n d N a g a m o c h i [1 6 ] s h o we d t h a t ¿ ( n; k ) · ½ n log2 n 2 + nk 2 ; if n is a p o we r o f 2 2 n blo g 2 nc + n § k¡1 2 ¨ ; o t h e r wis e , ( 6 ) a n d » 3 n ¡ 5 2 ¼ + » 1 2 µ nk + ¹ n + 1 2 º ¡ blo g 2 nc ¶¼ · ¿ ( n; k ) : ( 7 ) Fr o m t h e ir r e s u lt s , it h o ld s t h a t ¿ ( n; k ) · nk 2 + O ( n lo g 2 n) . P a r t ic u la r ly, t h e ir u p p e r b o u n d im p r o ve s t h e u p p e r b o u n d b y H o u a n d S h ig e n o fo r a ll n ¸ 1 3 . Th e y a ls o im p r o ve t h e u p p e r b o u n d b y H a d d a d et al. b y s h o win g t h a t t h e fa c t o r ( k= 2 + 2 p ) in t h e ir u p p e r b o u n d c a n b e r e p la c e d wit h a s m a lle r fa c t o r ( k=2 + p) : ¿ ( n; k ) · µ k 2 + p ¶µ n ¡ 1 + n ¡ 1 2 p ¡ 1 + 2 p ¶ ; ( 8 ) V. Hovnanyan, S. Poghosyan and V. Poghosyan 4 5 wh e r e p is a n y in t e g e r b e t we e n 1 a n d lo g 2 n. In t h is p a p e r , we c o n s t r u c t a k-fa u lt -t o le r a n t g o s s ip s c h e m e b a s e d o n W h e e l g r a p h s , wh ic h im p r o ve s t h e p r e vio u s ly kn o wn r e s u lt s o n t h e u p p e r b o u n d fo r t h e n u m b e r o f c a lls in c a s e o f s m a ll n a n d k. Th e o b t a in e d e xp r e s s io n s fo r g e n e r a l n a n d k a r e ( s e e Th e o r e m 2 ) a s fo llo ws : ¿ ( n; k ) · 2 3 nk + O ( n) ( 9 ) 2 . P r e lim in a r ie s A g o s s ip s c h e m e ( a s e qu e n c e o f c a lls b e t we e n n n o d e s ) c a n b e r e p r e s e n t e d b y a n u n d ir e c t e d e d g e -la b e le d g r a p h G = ( V; E ) wit h jV ( G) j = n ve r t ic e s . Th e ve r t ic e s a n d e d g e s o f G r e p r e s e n t c o r r e s p o n d in g ly t h e n o d e s a n d t h e c a lls b e t we e n t h e p a ir s o f n o d e s o f a g o s s ip s c h e m e . S u c h g r a p h s m a y h a ve m u lt ip le e d g e s , b u t n o t s e lf lo o p s . A n e d g e -la b e lin g o f G is a m a p p in g tG : E ( G) ! Z+. Th e la b e l tG ( e ) o f t h e g ive n e d g e e 2 E ( G ) r e p r e s e n t s t h e m o m e n t o f t im e , wh e n t h e c o r r e s p o n d in g c a ll o c c u r s . A s e qu e n c e P = ( v0; e1; v1; e2; v2; : : : ; ek; vk ) wit h ve r t ic e s vi 2 V ( G ) fo r 0 · i · k a n d e d g e s ei 2 E ( G ) fo r 1 · i · k is c a lle d a wa lk o f le n g t h k fr o m a ve r t e x v0 t o a ve r t e x vk in G, if e a c h e d g e ei jo in s t wo ve r t ic e s vi¡1 a n d vi fo r 1 · i · k. A wa lk, in wh ic h a ll t h e ve r t ic e s a r e d is t in c t is c a lle d a p a t h . If tG ( ei ) < tG ( ej ) fo r 1 · i < j · k, t h e n P is a n a s c e n d in g p a t h fr o m v0 t o vk in G. Give n t wo ve r t ic e s u a n d v, if t h e r e is a n a s c e n d in g p a t h fr o m u t o v, t h e n v r e c e ive s t h e in fo r m a t io n o f u. N o t e t h a t t wo d i®e r e n t e d g e s c a n h a ve t h e s a m e la b e l. S in c e we c o n s id e r o n ly ( s t r ic t ly) t h e a s c e n d in g p a t h s , t h e n s u c h e d g e s ( i.e . c a lls ) a r e in d e p e n d e n t , wh ic h m e a n s t h a t t h e e d g e s wit h t h e s a m e la b e l c a n b e r e o r d e r e d a r b it r a r ily b u t fo r a n y t1 < t2 a ll t h e e d g e s wit h t h e la b e l t1 a r e o r d e r e d b e fo r e a n y o f t h e e d g e s wit h t h e la b e l t2. De¯nition 1: The communication between two vertices of G is called k-failure safe if an ascending path between them remains, even if arbitrary k edges of G are deleted (the corre- sponding calls fail). The graph G is called a k-fault-tolerant gossip graph if the communica- tion between all the pairs of its vertices is k-failure safe. Fr o m t h e Me n g e r t h e o r e m [2 2 ] it fo llo ws t h a t a k-fa u lt -t o le r a n t g o s s ip g r a p h is a g r a p h wh o s e e d g e s a r e la b e le d in s u c h a wa y t h a t t h e r e a r e a t le a s t k + 1 e d g e -d is jo in t a s c e n d in g p a t h s b e t fwe e n t wo a r b it r a r y ve r t ic e s . A 0 -fa u lt -t o le r a n t g o s s ip g r a p h is s im p ly c a lle d a g o s s ip g r a p h . To d e s c r ib e t h e c o n s t r u c t io n o f k-fa u lt -t o le r a n t g o s s ip g r a p h s ( s c h e m e s ) , we u s e s o m e im p o r t a n t d e ¯ n it io n s a n d p r o p o s it io n s g ive n in t h e wo r ks [1 5 ], [1 6 ]. In o r d e r t o s im p lify t h e d is c u s s io n fo r e d g e -d is jo in t p a t h s , we o ft e n o m it t h e ve r t ic e s ( o r e d g e s ) in t h e d e s c r ip t io n o f a p a t h if t h e r e is n o c o n fu s io n . De¯nition 2: L et P = ( e1; e2; : : : ; ek ) be a path with edges ei 2 E ( G) for 1 · i · k in a labeled graph G. If P is divided into s+1 subpaths P (1) = ( e1; : : : ; ep1 ) , P (2) = ( ep1+1; : : : ; ep2 ) , : : : , P (s+1) = ( eps+1; : : : ; ek ) , then we write P = P (1) ¯ P (2) ¯ ¢ ¢ ¢ ¯ P (s+1), where ¯ is the concatenation operation on two paths for which the last vertex of one path is the ¯rst vertex of the other. If P = P (1) ¯ P (2) ¯ ¢ ¢ ¢ ¯ P (s+1) such that P (j) is an ascending path for 1 · j · s + 1 and P (j) ¯ P (j+1) is not an ascending path for 1 · j · s, then P is an s-folded ascending path in G. F or an s-folded ascending path P , the folded number of P is de¯ned to be s. 4 6 Fault-tolerant Gossip Graphs Based on Wheel Graphs De¯nition 3: Consider two graphs G1 = ( V; E1 ) and G2 = ( V; E2 ) with the same set of vertices V and labeled edge sets E1 and E2, respectively. The edge sum of these graphs is the graph G1 + G2 = G = ( V; E ) with E = E1 [ E2, whose edges e 2 E are labeled by the following rules: tG ( e) = ( tG1 ( e ) ; if e 2 E1; tG2 ( e ) + m a x e02E1 tG1 ( e 0 ) ; if e 2 E2: ( 1 0 ) The edge sum G1 + G2 +¢ ¢ ¢+ Gh of h identical graphs ( G1 = G2 = ¢ ¢ ¢ = Gh ´ G ) is denoted by hG. E ach set E ( Gi ) in hG is denoted by Ei ( hG ) , i.e., E ( hG ) = S 1·i·h Ei ( hG) . Note that the labels of the edges in Ei ( hG ) are greater than the corresponding edges in E ( G) by ( i ¡ 1 ) £ m a x e2E(G) tG ( e) . Given a subset of edges A µ E ( G) , denote its copy in the set Ei ( hG ) by Ai. B y this analogy, a path P in G as a subset of E ( G) has a copy in Ei ( hG ) , which we denote by Pi. L e t P = P (1) ¯ P (2) ¯ ¢ ¢ ¢ ¯ P (s+1) b e a n s-fo ld e d a s c e n d in g p a t h fr o m a ve r t e x u t o a ve r t e x v in G, wh e r e P (j) is a n a s c e n d in g s u b p a t h fo r 1 · j · s + 1 . Th e n , Pi is a ls o a n s-fo ld e d a s c e n d in g p a t h a n d Pi = P (1) i ¯ P (2) i ¯ ¢ ¢ ¢ ¯ P (s+1) i fo r 1 · i · h. N o w c o n s id e r t h e p a t h P ( k ) = P (1) k ¯ P (2) k+1 ¯ ¢ ¢ ¢ ¯ P (s+1) k+s in hG. Th e n , P ( k ) is a n a s c e n d in g p a t h fr o m u t o v fo r 1 · k · h ¡ s s u c h t h a t P ( k ) a n d P ( k 0 ) a r e e d g e -d is jo in t if k 6= k 0. Th u s , b a s e d o n P , we c a n c o n s t r u c t ( h ¡ s) e d g e -d is jo in t a s c e n d in g p a t h s fr o m u t o v in hG. S im ila r ly, b a s e d o n a n o t h e r s-fo ld e d a s c e n d in g p a t h P 0 fr o m u t o v, we c a n c o n s t r u c t ( h ¡ s) e d g e - d is jo in t a s c e n d in g p a t h s P 0 ( k ) fr o m u t o v fo r 1 · k · h ¡ s. If P a n d P 0 a r e e d g e -d is jo in t , t h e n a ll t h e p a t h s P ( 1 ) ; : : : ; P ( h ¡ s) a n d P 0 ( 1 ) ; : : : ; P 0 ( h ¡ s) a r e p a ir wis e e d g e -d is jo in t b y c o n s t r u c t io n . Th e r e fo r e , t h e fo llo win g le m m a h o ld s ( s e e [1 5 , 1 6 ]) . Lemma 1: L et u and v be vertices in a labeled graph G. If there are p edge-disjoint s-folded ascending paths from u to v in G, then there are p ( h ¡ s) edge-disjoint ascending paths from u to v in hG for any integer h ¸ s. Fr o m t h is le m m a , if t h e r e a r e p e d g e -d is jo in t s-fo ld e d a s c e n d in g p a t h s fr o m u t o v in G, t h e n t h e r e a r e k + 1 e d g e -d is jo in t a s c e n d in g p a t h s fr o m u t o v in ³ s + dk+1 p e ´ G. Th u s , t h e fo llo win g c o r o lla r y is o b t a in e d ( s e e [1 5 ]) . Cor ollar y 1: L et G be a graph with n vertices and m edges. If there are p edge-disjoint s-folded ascending paths between every pair of vertices in a labeled graph G, then ¿ ( n; k ) ·³ s + dk+1 p e ´ m. In o r d e r t o im p r o ve t h is e s t im a t io n o f t h e u p p e r b o u n d , a s t r o n g e r p r o p o s it io n is fo r m u la t e d a n d p r o ve d in [1 6 ]. T heor em 1: L et G be a labeled graph with n vertices. Suppose that ² E ( G) can be decomposed into l subsets F (0); F (1); : : : ; F (l¡1) such that for any two edges e 2 F (i) and e 0 2 F (j), tG ( e ) < tG ( e 0 ) if i < j, ² for any two vertices u and v, there are p edge-disjoint paths from u to v such that the sum of their folded numbers is at most q, and the last edges of ri paths are in F (i) for 0 · i · l ¡ 1 . V. Hovnanyan, S. Poghosyan and V. Poghosyan 4 7 Then, the minimal number of edges in a k-fault-tolerant gossip graph is bounded ¿ ( n; k ) · » ( n; k ) ; ( 1 1 ) with » ( n; k ) de¯ned by the expression » ( n; k ) = X 0·i·w jF (i m od l)j; ( 1 2 ) where w is an integer satisfying X 0·i·w ri m od l ¸ k + q + 1 : ( 1 3 ) D u r in g t h e p r o o f, t h e g r a p h eG = hG + G 0 wit h h = bw l c a n d G 0 = ( V; [0·i·w¡hlF (i) ) is c o n s t r u c t e d , a n d s h o we d t h a t it is a k-fa u lt -t o le r a n t g o s s ip g r a p h . Th e n u m b e r o f e d g e s o f t h is g r a p h is jE ( eG ) j = P 0·i·w jF (i m od l)j. In t h e n e xt s e c t io n we c o n s t r u c t a la b e le d W h e e l g r a p h a n d a p p ly Th e o r e m 1 t o im p r o ve t h e kn o wn e s t im a t io n s o f t h e u p p e r b o u n d s fo r ¿ ( n; k ) . 3 . Fa u lt -t o le r a n t Go s s ip Gr a p h s B a s e d o n W h e e l Gr a p h Co n s id e r a wh e e l g r a p h G = ( V; E ) wit h a n o d d n u m b e r o f ve r t ic e s n, wh o s e ve r t ic e s a n d e d g e s a r e la b e le d b y t h e fo llo win g r u le s : t h e la b e l o f t h e c e n t r a l ve r t e x is u, t h e r e m a in in g ve r t ic e s ( wh ic h a r e lo c a t e d o n t h e c ir c le ) a r e la b e le d c o n s e qu e n t ly v1; v 0 1; v2; v 0 2; : : : ; vk; v 0 k, wh e r e n = 2 k + 1 . S in c e t h e p e r io d ic b o u n d a r y c o n d it io n s a r e a s s u m e d , we id e n t ify t h e ve r t ic e s vi§k ´ vi a n d v0i§k ´ v0i fo r i = 1 ; 2 ; : : : ; k. Th e s e t o f e d g e s c o n s is t s o f t h r e e s u b s e t s E ( G ) = F (0) [ F (1) [ F (2) ( 1 4 ) wit h F (0) = f ( vi; v0i ) : tG ( ( vi; v0i ) ) = 1 ; i = 1 ; 2 ; : : : ; kg ; ( 1 5 ) F (1a) = f ( v0i; u ) : tG ( ( v0i; u ) ) = 2 ; i = 1 ; 2 ; : : : ; kg ; ( 1 6 ) F (1b) = f ( vi; u ) : tG ( ( vi; u ) ) = 3 ; i = 1 ; 2 ; : : : ; kg ; ( 1 7 ) F (1) = F (1a) [ F (1b); ( 1 8 ) F (2) = f ( v0i; vi+1 ) : tG ( ( v0i; vi+1 ) ) = 4 ; i = 1 ; 2 ; : : : ; kg : ( 1 9 ) 4 8 Fault-tolerant Gossip Graphs Based on Wheel Graphs Fig. 1. Wheel graph for odd n (here n=11). Fig. 2. The illustration of two arbitrary ¯xed vertices in the wheel graph. V. Hovnanyan, S. Poghosyan and V. Poghosyan 4 9 Fig . 1 illu s t r a t e s t h e wh e e l g r a p h G fo r n = 1 1 ve r t ic e s . Th e n we a p p ly Th e o r e m 1 t o t h is g r a p h . Fo r a ll p a ir s o f ve r t ic e s in G, we ¯ r s t c o n s t r u c t 3 e d g e -d is jo in t fo ld e d p a t h s fr o m t h e ¯ r s t ve r t e x t o t h e s e c o n d o n e . Fo r i; j = 1 ; 2 ; : : : ; k a n d j 6= i; i ¡ 1 ; i + 1 ; i + 2 ( s e e Fig . 2 fo r illu s t r a t io n ) we h a ve ² fr o m vi t o u { vi 3¡! u { vi 1¡! v0i 2¡! u { vi 4¡! v0i¡1 2¡! u ² fo r m u t o v0i { u 2¡! v0i { u 3¡! vi 1¡! v0i { u 3¡! vi+1 4¡! v0i ² fr o m vi t o vj { vi 3¡! u 2¡! v0j¡1 4¡! vj { vi 1¡! v0i 2¡! u 3¡! vj+1 4¡! v0j 1¡! vj { vi 4¡! v0i¡1 2¡! u 3¡! vj ² fo r m vi t o v0j { vi 3¡! u 2¡! v0j { vi 1¡! v0i 2¡! u 3¡! vj 1¡! v0j { vi 4¡! v0i¡1 2¡! u 3¡! vj+1 4¡! v0j ² fr o m v0i t o vj { v0i 2¡! u 3¡! vj+1 4¡! v0j 1¡! vj { v0i 1¡! vi 3¡! u 2¡! v0j¡1 4¡! vj { v0i 4¡! vi+1 1¡! v0i+1 2¡! u 3¡! vj ² fr o m v0i t o v0j { v0i 2¡! u 3¡! vj 1¡! v0j { v0i 1¡! vi 3¡! u 2¡! v0j { v0i 4¡! vi+1 1¡! v0i+1 2¡! u 3¡! vj+1 4¡! v0j 5 0 Fault-tolerant Gossip Graphs Based on Wheel Graphs Th e e d g e -d is jo in t fo ld e d p a t h s fo r j = i; i ¡ 1 ; i + 1 ; i + 2 a r e s h o r t e r ; t h e y h a ve le s s o r e qu a l fo ld e d n u m b e r s a n d a r e e a s ie r t o c o n s t r u c t . Th e r e fo r e , t h e y a r e n o t p r e s e n t e d h e r e in o r d e r t o a vo id a n a r t i¯ c ia l g r o wt h o f t h e t e xt . Fin a lly, we h a ve jF (0)j = ( n ¡ 1 ) = 2 ; jF (1)j = n ¡ 1 ; jF (2)j = ( n ¡ 1 ) =2 ; ( 2 0 ) p = 3 ; r0 = r1 = r2 = 1 ; q = 3 ; ( 2 1 ) fr o m wh ic h we o b t a in w ¸ k + 3 a n d k+3X i=0 jF (i m od 3)j = 8 < : 2 3 ( n ¡ 1 ) k + 5 2 ( n ¡ 1 ) ; if ( k m o d 3 ) = 0 2 3 ( n ¡ 1 ) ( k ¡ 1 ) + 7 2 ( n ¡ 1 ) ; if ( k m o d 3 ) = 1 2 3 ( n ¡ 1 ) ( k ¡ 2 ) + 4 ( n ¡ 1 ) ; if ( k m o d 3 ) = 2 ( 2 2 ) Fo r e ve n n, we m o d ify t h e wh e e l g r a p h b y a d d in g a n e w ve r t e x u0 a n d t r a n s fo r m in g t h e e d g e s e t t o t h e fo llo win g e xp r e s s io n E ( G ) = F (0) [ F (1) [ F (2) ( 2 3 ) Fig. 3. Wheel graph for odd n (here n=12). wit h F (0) = f( vi; v0i ) : tG ( ( vi; v0i ) ) = 1 ; i = 1 ; 2 ; : : : ; kg ; ( 2 4 ) F (1a) = f( v0i; u ) : tG ( ( v0i; u ) ) = 2 ; i = 1 ; 2 ; : : : ; kg ; ( 2 5 ) ea = ( u; u 0 ) ; tG ( ea ) = 3 ; ( 2 6 ) F (1b) = f( vi; u0 ) : tG ( ( vi; u0 ) ) = 4 ; i = 1 ; 2 ; : : : ; kg ; ( 2 7 ) eb = ( u; u 0 ) ; tG ( eb ) = 5 ; ( 2 8 ) F (1) = F (1a) [ F (1b) [ fea; ebg; ( 2 9 ) F (2) = f( v0i; vi+1 ) : tG ( ( v0i; vi+1 ) ) = 6 ; i = 1 ; 2 ; : : : ; kg : ( 3 0 ) V. Hovnanyan, S. Poghosyan and V. Poghosyan 5 1 H e r e t h e ve r t ic e s u a n d u0 a r e c o n n e c t e d b y t wo e d g e s ea a n d eb. Th e g r a p h G fo r n = 1 2 ve r t ic e s is s h o wn in Fig . 3 . Co n s t r u c t in g t h e e d g e -d is jo in t fo ld e d p a t h s , o n e o b t a in s jF (0)j = ( n ¡ 2 ) = 2 ; jF (1)j = n; jF (2)j = ( n ¡ 2 ) = 2 ; ( 3 1 ) p = 3 ; r0 = r1 = r2 = 1 ; q = 3 ; ( 3 2 ) wh ic h r e s u lt s w ¸ k + 3 a n d k+3X i=0 jF (i m od 3)j = 8 < : 1 3 ( 2 n ¡ 1 ) k + 5 2 n ¡ 4 ; if ( k m o d 3 ) = 0 1 3 ( 2 n ¡ 1 ) ( k ¡ 1 ) + 7 2 n ¡ 5 ; if ( k m o d 3 ) = 1 1 3 ( 2 n ¡ 1 ) ( k ¡ 2 ) + 4 n ¡ 5 ; if ( k m o d 3 ) = 2 ( 3 3 ) Fr o m E q. ( 2 2 ) fo r o d d n a n d E q. ( 3 3 ) fo r e ve n n t h e fo llo win g t h e o r e m h o ld s . T heor em 2: In k fault-tolerant gossip schemes the upper bound of ¿ ( n; k ) minimum needed calls satis¯es the following condition: ¿ ( n; k ) · 2 3 nk + O ( n) : ( 3 4 ) 4 . S p e c ia l Ca s e s : k = 1 ; 2 Fin a lly, we c o n s id e r t h e s p e c ia l c a s e s wh e n k = 1 a n d k = 2 . In t h e s e c a s e s t h e c o n s t r u c t io n o f t h e k fa u lt -t o le r a n t g r a p h b e c o m e s s im p le r . W e p r e s e n t it h e r e , wit h o u t c o n s id e r in g t h e d e t a ils : ¿ ( n; 1 ) · 2 n ¡ 3 + jn 2 k ; ¿ ( n; 2 ) · 2 n ¡ 3 + n: ( 3 5 ) A c kn o wle d g e m e n t s Th is wo r k wa s s u p p o r t e d b y t h e S t a t e Co m m it t e e o f S c ie n c e ( S CS ) ME S R A , wit h in t h e fr a m e wo r k o f t h e r e s e a r c h p r o je c t N o S CS 1 3 -1 B 1 7 0 . Th e a u t h o r s a r e g r a t e fu l t o a c a d e m i- c ia n . Y u .H . S h o u ko u r ia n fo r im p o r t a n t d is c u s s io n s a n d c r it ic a l r e m a r ks a t a ll s t a g e s o f t h e wo r k. Refer ences [1 ] B .B a ke r a n d R .S h o s t a k, \ Go s s ip s a n d t e le p h o n e s " , D iscrete M athematics, vo l. 2 , p p . 1 9 1 -1 9 3 , 1 9 7 2 . [2 ] R .T. B u m b y, \ A p r o b le m wit h t e le p h o n e s " , SIAM J ournal on Algebraic D iscrete M eth- ods, vo l. 2 , p p . 1 3 -1 8 , 1 9 8 1 . [3 ] A . H a jn a l, E .C. Miln e r a n d E . S z e m e r e d i, \ A c u r e fo r t h e t e le p h o n e d is e a s e " , Canadian M athematical B ulletin., vo l. 1 5 , p p . 4 4 7 -4 5 0 , 1 9 7 2 . [4 ] T. Tijd e m a n , \ On a t e le p h o n e p r o b le m " , Nieuw Archief voor W iskunde vo l. 3 , p p . 1 8 8 -1 9 2 , 1 9 7 1 . [5 ] A . S e r e s s , \ Qu ic k g o s s ip in g b y c o n fe r e n c e c a lls " , SIAM J ournal on D iscrete M athemat- ics, vo l. 1 , p p . 1 0 9 -1 2 0 , 1 9 8 8 . 5 2 Fault-tolerant Gossip Graphs Based on Wheel Graphs [6 ] D .B . W e s t , \ Go s s ip in g wit h o u t d u p lic a t e t r a n s m is s io n s " , SIAM J ournal on Algebraic D iscrete M ethods, vo l. 3 , p p . 4 1 8 -4 1 9 , 1 9 8 2 . [7 ] G. Fe r t in a n d A . R e s p a u d , " A s u r ve y o n K n Äo d e l g r a p h s " , D iscrete Applied M athematics, vo l. 1 3 7 , n o . 2 , p p . 1 7 3 -1 9 5 , 2 0 0 3 . [8 ] R . L a b a h n , \ K e r n e ls o f m in im u m s iz e g o s s ip s c h e m e s " , D iscrete M athematics, vo l. 1 4 3 , p p . 9 9 -1 3 9 , 1 9 9 5 . [9 ] R . L a b a h n , \ S o m e m in im u m g o s s ip g r a p h s " , Networks, vo l. 2 3 , p p . 3 3 3 -3 4 1 , 1 9 9 3 . [1 0 ] G. Fe r t in a n d R . L a b a h n , \ Co m p o u n d in g o f g o s s ip g r a p h s " , Networks, vo l. 3 6 , p p . 1 2 6 -1 3 7 , 2 0 0 0 . [1 1 ] A . B a ve la s , \ Co m m u n ic a t io n p a t t e r n in t a s k-o r ie n t e d g r o u p s " , J ournal of the Acoustical Society of America vo l. 2 2 , p p . 7 2 5 -7 3 0 , 1 9 5 0 . [1 2 ] W . K n o d e l, \ N e w g o s s ip s a n d t e le p h o n e s " , D iscrete M athematics, vo l. 1 3 , p p . 9 5 , 1 9 7 5 . [1 3 ] Z. H o a n d M. S h ig e n o , \ N e w b o u n d s o n t h e m in im u m n u m b e r o f c a lls in fa ilu r e -t o le r a n t Go s s ip in g " , Networks, vo l. 5 3 , p p . 3 5 -3 8 , 2 0 0 9 . [1 4 ] K . A . B e r m a n a n d M. H a wr ylyc z , \ Te le p h o n e p r o b le m s wit h fa ilu r e s " , SIAM J ournal on Algebraic D iscrete M ethods, vo l. 7 , p p . 1 3 -1 7 , 1 9 8 7 . [1 5 ] R .W . H a d d a d , S . R o y a n d A . A . S c h a ®e r , \ On g o s s ip in g wit h fa u lt y t e le p h o n e lin e s " , SIAM J ournal on Algebraic D iscrete M ethods, vo l. 8 , p p . 4 3 9 -4 4 5 , 1 9 8 7 . [1 6 ] T. H a s u n a m a a n d H . N a g a m o c h i, \ Im p r o ve d b o u n d s fo r m in im u m fa u lt -t o le r a n t g o s s ip g r a p h s " , L ecture Notes in Computer Science, vo l. 6 9 8 6 , p p . 2 0 3 -2 1 4 , 2 0 1 1 . [1 7 ] S . M. H e d e t n ie m i, S . T. H e d e t n ie m i a n d A . L . L ie s t m a n , \ A s u r ve y o f g o s s ip in g a n d b r o a d c a s t in g in c o m m u n ic a t io n n e t wo r ks " , Networks, vo l. 1 8 , p p . 3 1 9 -3 4 9 , 1 9 8 8 . [1 8 ] D . B . W e s t , \ A c la s s o f s o lu t io n s t o t h e g o s s ip p r o b le m " , p a r t I, D iscrete M athematics, vo l. 3 9 , n o . 3 , p p . 3 0 7 -3 2 6 , 1 9 8 2 ; p a r t II, D isc. M ath., vo l. 4 0 , n o . 1 , p p . 8 7 -1 1 3 , 1 9 8 2 ; p a r t III, D iscrete M athematics, vo l. 4 0 , n o . 2 -3 , p p . 2 8 5 -3 1 0 , 1 9 8 2 . [1 9 ] A . S e r e s s , \ Qu ic k Go s s ip in g wit h o u t d u p lic a t e t r a n s m is s io n s " , Graphs and Combina- torics, vo l. 2 , p p . 3 6 3 -3 8 1 , 1 9 8 6 . [2 0 ] P . Fr a ig n ia u d , A . L . L ie s t m a n a n d D . S o it e a u , \ Op e n p r o b le m s " , P arallel P rocessing L etters, vo l. 3 , n o . 4 , p p . 5 0 7 -5 2 4 , 1 9 9 3 . [2 1 ] A . P e lc , \ Fa u lt -t o le r a n t b r o a d c a s t in g a n d g o s s ip in g in c o m m u n ic a t io n n e t wo r ks " , Net- works, vo l. 2 8 , p p . 1 4 3 -1 5 6 , 1 9 9 6 . [2 2 ] K . Me n g e r , \ Zu r a llg e m e in e n K u r ve n t h e o r ie " , F und. M ath. vo l. 1 0 , p p . 9 6 { 1 1 5 , 1 9 2 7 . Submitted 25.08.2014, accepted 27.11.2014. Wheel ·ñ³ýÝ»ñÇ íñ³ ÑÇÙÝí³Í k-Ñáõë³ÉÇáõÃÛ³Ùµ gossip ·ñ³ýÝ»ñ ì. ÐáíݳÝÛ³Ý, ê. äáÕáëÛ³Ý ¨ ì. äáÕáëÛ³Ý ²Ù÷á÷áõÙ Gossip ËݹÇñÁ (Ñ»é³ËáëÝ»ñÇ ËݹÇñÁ) ÇÝýáñÙ³ódzÛÇ ï³ñ³ÍÙ³Ý ËݹÇñ ¿, áñï»Õ ѳÕáñ¹³ÏóáõÃÛ³Ý ó³ÝóÇ n ѳݷáõÛóÝ»ñÇó Ûáõñ³ù³ÝãÛáõñÁ ïÇñ³å»ïáõÙ ¿ áñ¨¿ »½³ÏÇ ÇÝýáñÙ³ódzÛÇ, áñÁ å»ïù ¿ ÷á˳ÝóíÇ µáÉáñ Ùݳó³Í ѳݷáõÛóÝ»ñÇÝ` û·ï³·áñÍ»Éáí ѳݷáõÛóÝ»ñÇ ½áõÛ·»ñÇ ÙÇç¨ »ñÏÏáÕÙ³ÝÇ Ñ³Õáñ¹³ÏóáõÃÛáõÝÁ: îñí³Í »ñÏáõ ѳݷáõÛóÝ»ñÇ ÙÇç¨ ½³Ý·Ç Å³Ù³Ý³Ï ¹ñ³Ýù ÷á˳ݳÏáõÙ »Ý ³Û¹ å³ÑÇÝ Çñ»Ýó ѳÛïÝÇ áÕç V. Hovnanyan, S. Poghosyan and V. Poghosyan 5 3 ÇÝýáñÙ³ódzÝ: ²Ûë Ñá¹í³ÍáõÙ Ù»Ýù ¹Çï³ñÏáõÙ »Ýù k Ñáõë³ÉÇáõÃÛ³Ùµ gossip ËݹÇñÁ, áñÁ ÁݹѳÝáõñ gossip ËݹñÇ ÁݹѳÝñ³óáõÙÝ ¿, »ñµ ÃáõÛɳïñí³Í »Ý ½³Ý·»ñÇ ³Ù»Ý³ß³ïÁ k å³ï³Ñ³Ï³Ý ˳÷³ÝáõÙÝ»ñ: ÊݹÇñÁ ϳ۳ÝáõÙ ¿ ½³Ý·»ñÇ ³ÛÝ ¿ ( n; k ) Ýí³½³·áõÛÝ ù³Ý³ÏÁ ·ïÝ»Éáõ Ù»ç, áñÇ ¹»åùáõ٠ϳå³ÑáííÇ ÇÝýáñÙ³ódzÛÇ ³ÙµáÕç³Ï³Ý ï³ñ³ÍáõÙÁ: Ø»Ýù ݳ˳·Í»É »Ýù k Ñáõë³ÉÇáõÃÛ³Ùµ íóñ³Ï³ÛáõÝ gos- sip ë˻ٳ (½³Ý·»ñÇ Ñ³çáñ¹³Ï³ÝáõÃÛáõÝ), áñå»ë½Ç ·ïÝ»Ýù ¿ ( n; k ) -Ç Ñ³Ù³ñ í»ñÇÝ ë³ÑÙ³ÝÝ»ñ, áñáÝù ϵ³ñ»É³í»Ý ݳËáñ¹ ³ñ¹ÛáõÝùÝ»ñÁ n-Ç ¨ k-Ç áñáß³ÏÇ ÷áùñ ³ñÅ»ùÝ»ñÇ ¹»åùáõÙ: k-òîëåðàíòíûå gossip ãðàôû îñíîâàííûå íà wheel ãðàôîâ Â.Îâíàíÿí, Ñ. Ïîãîñÿí è Â. Ïîãîñÿí Àííîòàöèÿ Ïðîáëåìîé gossip (ïðîáëåìîé òåëåôîíîâ) ÿâëÿåòñÿ ïðîáëåìà ðàñïðîñòðàíåíèÿ èíôîðìàöèè, ãäå êàæäûé èç n óçëîâ ñåòè ñâÿçè èìååò óíèêàëüíûé ôðàãìåíò èíôîðìàöèè, êîòîðûé äîëæåí áûòü ïåðåäàí âñåì îñòàëüíûåì óçëàì ñ ïîìîùüþ äâóñòîðîííåé ñâÿçè (òåëåôîííûå çâîíêè) ìåæäó ïàðàìè óçëîâ. Ïîñëå âûçîâà ìåæäó äàííûìè äâóìÿ óçëàìè, îíè îáìåíèâàþòñÿ âñåé èíôîðìàöèåé, èçâåñòíîé èì â äàííûé ìîìåíò.  ýòîé ñòàòüå, ìû èññëåäóåì k-îòêàçîóñòîé÷èâóþ gos- sip ïðîáëåìó, êîòîðàÿ ÿâëÿåòñÿ îáîáùåíèåì çàäà÷è gossip, ãäå íàèáîëåå k ïðîèçâîëüíûõ ñáîéíûõ âûçîâîâ ðàçðåøåíû. Ïðîáëåìà â òîì, ÷òîáû íàéòè ìèíèìàëüíîå êîëè÷åñòâî çâîíêîâ ¿ ( n; k ) , íåîáõîäèìûõ äëÿ îáåñïå÷åíèÿ ïîëíîãî ðàñïðîñòðàíåíèÿ èíôîðìàöèè. Ìû ïîñòðîèëè k-îòêàçîóñòîé÷èâóþ gossip ñõåìó (ïîñëåäîâàòåëüíîñòè âûçîâîâ) ñ öåëüþ íàéòè âåðõíèå ãðàíèöû ¿ ( n; k ) , êîòîðàÿ óëó÷øàåò ðàíåå èçâåñòíûå ðåçóëüòàòû äëÿ íåêîòîðûõ ìàëûõ çíà÷åíèé n è k.