Article_Final.DVI Mathematical Problems of Computer Science 41, 63{73, 2014. On LAO T wo-stage T esting of M ultiple H ypotheses Concer ning M ar kov Chain E vg u e n i A . H a r o u t u n ia n , P a r a n d z e m M. H a ko b ya n a n d A r a m O. Y e s a ya n Institute for Informatics and Automation Problems of NAS RA e-mail: evhar@ipia.sci.am, par h@ipia.sci.am, armfranse@yahoo.fr Abstract Two-stage testing of multiple hypotheses concerning Markov chain with two sep- arate families of hypothetical transition probabilities is considered. The matrix of reliabilities of logarithmically asymptotically optimal hypotheses testing by a pair of stages is studied and compared with the case of similar one-stage testing. It is shown that two-stage testing needs less operations than one-stage testing. Keywords: Logarithmically asymptotically optimal (LAO) test, Multiple hy- potheses testing, Multistage tests, Reliabilities matrix, Error probability exponent, Markov chain. 1 . In t r o d u c t io n In t h is p a p e r we s t u d y m u lt ip le h yp o t h e s e s L A O t wo -s t a g e t e s t in g b y a s a m p le o f s e qu e n c e o f e xp e r im e n t s c o n c e r n in g a Ma r ko v c h a in . A n a lo g o u s p r o b le m wa s fo r m u la t e d a n d s o lve d fo r t h e c a s e o f in d e p e n d e n t e xp e r im e n t s in [1 ]. Th e c la s s ic a l p r o b le m o f s t a t is t ic a l h yp o t h e s e s t e s t in g r e fe r s t o t wo h yp o t h e s e s [2 ]. Th e p r o c e d u r e o f s t a t is t ic a l h yp o t h e s e s d e t e c t io n is c a lle d a t e s t . Th e p r o b a b ilit y o f in c o r r e c t a c c e p t a n c e o f o n e h yp o t h e s is in s t e a d o f t h e o t h e r is a n e r r o r p r o b a b ilit y. W e c o n s id e r t h e c a s e o f a t e s t s s e qu e n c e , wh e r e t h e p r o b a b ilit ie s o f e r r o r d e c r e a s e e xp o n e n t ia lly a s 2 ¡N E, wh e n t h e n u m b e r o f o b s e r va t io n s N ( s iz e o f s a m p le ) t e n d s t o in ¯ n it y. Th e e xp o n e n t o f e r r o r p r o b a b ilit y E we c a ll reliability. Th e t e s t is c a lle d logarithmically asymptotically optimal ( L A O) if fo r o n e o f t h e g ive n o f r e lia b ilit ie s t h e c o n s t r ic t e d t e s t p r o vid e d t h e g r e a t e s t va lu e o f t h e o t h e r r e lia b ilit y. Th e g o a l o f r e s e a r c h wa s t o ¯ n d a n o p t im a l fu n c t io n a l r e la t io n b e t we e n t h e e r r o r p r o b a b ilit ie s e xp o n e n t s o f t h e ¯ r s t a n d t h e s e c o n d t yp e s o f e r r o r . S u c h o p t im a l t e s t s we r e c o n s id e r e d ¯ r s t b y H o e ®d in g [3 ], e xa m in e d la t e r b y Cs is z ¶a r a n d L o n g o [4 ], Tu s n a d y [5 ], [6 ], L o n g o a n d S g a r r o [7 ], B ir g ¶ e [8 ] ( h e p r o p o s e d t h e t e r m L A O) a n d b y m a n y o t h e r s . S o m e a u t h o r s fo r t h is c o n c e p t o f t e s t in g [6 , 9 , 1 0 ] a p p lie d t h e t e r m s exponentially rate optimal ( E R O) . H o e ®d in g 's r e s u lt wa s g e n e r a liz e d t o ¯ n it e Ma r ko v c h a in in [1 1 ]. Th e n e e d o f t e s t in g o f m o r e t h a n t wo h yp o t h e s e s in m a n y s c ie n t ī c a n d a p p lie d ¯ e ld s h a s in c r e a s e d r e c e n t ly. Th e p r o b le m o f L A O t e s t in g o f m u lt ip le h yp o t h e s e s wa s in ve s t ig a t e d in [1 2 ] a n d wa s la t e r e xt e n d e d fo r a d is c r e t e s t a t io n a r y Ma r ko v s o u r c e a n d a r b it r a r ily va r yin g Ma r ko v s o u r c e [1 3 ]{ [2 0 ]. 6 3 6 4 On LAO Two-stage Testing of Multiple Hypotheses Concerning Markov Chain Two -s t a g e p r o c e d u r e s o f t e s t in g a r e u s e fu l in a p p lic a t io n s fo r a c h ie vin g m in im a l e c o n o m ic e xp e n d it u r e . 2 . D e ¯ n it io n s a n d N o t a t io n s Th is s e c t io n is d e d ic a t e d t o n e c e s s a r y n o t a t io n s a n d p r o p e r t ie s . L e t X b e a ¯ n it e s e t o f s t a t e s o f s t a t io n a r y Ma r ko v c h a in X0, X1, X2, ..., wh ic h is a s t o c h a s t ic p r o c e s s d e ¯ n e d b y m a t r ix o f t r a n s it io n p r o b a b ilit ie s P ( Xn = xjXn¡1 = u ) = P ( xju ) ; x; u 2 X : Th e r e e xis t s t h e c o r r e s p o n d in g s t a t io n a r y p r o b a b ilit y d is t r ib u t io n ( P D ) Q = fQ( u ) g, s u c h t h a t X x2X Q( u ) P ( xju ) = Q ( x ) ; X u2X Q( u ) = 1 : S u p p o s e L h yp o t h e t ic a l t r a n s it io n p r o b a b ilit ie s Gl = fGl ( xju) g, x; u 2 X , l = 1 ; L, wit h c o r r e s p o n d in g s t a t io n a r y d is t r ib u t io n s Ql = fQl ( u ) g, l = 1 ; L, a r e g ive n a n d a r r a n g e d in t wo d is jo in t fa m ilie s . Th e ¯ r s t fa m ily P1 in c lu d e s R h yp o t h e s e s a n d t h e s e c o n d fa m ily P2 in c lu d e s L ¡ R h yp o t h e s e s . It is u n kn o wn wh ic h o n e o f t h o s e d is t r ib u t io n s is r e a liz e d . On t h e b a s e o f t h e s a m p le x = ( x0; x1; :::; xN ) 2 X N +1 o f t h e r e s u lt s o f N + 1 o b s e r va t io n s t h e s t a t is t ic ia n is t r yin g t o m a ke a r e lia b le d e c is io n a b o u t r e a l d is t r ib u t io n . Th e t wo -s t a g e t e s t o n t h e b a s e o f t h e s a m p le x we d e n o t e b y ©N ( x ) , it m a y b e c o m p o s e d b y t h e p a ir o f t e s t s 'N1 ( x ) a n d ' N 2 ( x ) o f t wo c o n s e c u t ive s t a g e s , we wr it e © N = ( 'N1 ; ' N 2 ) . Th e ¯ r s t s t a g e fo r s e le c t io n o f a fa m ily P1 o r P2 is a n o n -r a n d o m iz e d t e s t 'N1 ( x) . Th e n e xt s t a g e is fo r m a kin g a d e c is io n in t h e d e t e r m in e d fa m ily o f P D s , it is m a d e b y n o n -r a n d o m iz e d t e s t 'N2 ( x) b a s e d o n t h e s a m e s a m p le x. W e d e ¯ n e a n y n e c e s s a r y c h a r a c t e r is t ic s S h a n n o n 's e n t r o p y a n d K u llb a c k-L e ib le r 's d ive r - g e n c e s fo r Ma r ko v c h a in . Th e S h a n n o n 's e n t r o p y fo r Ma r ko v c h a in is d e ¯ n e d a s fo llo ws : HQ±P ( X ) 4 = ¡ X x;u Q ( u ) P ( xju ) lo g P ( xju ) : Th e c o n d it io n a l K u llb a c k-L e ib le r d ive r g e n c e D ( P kW jQ ) o f P D s Q ± P 4= fQ( u ) P ( xju ) ) ; u 2 X ; x 2 X g a n d Q ± W 4= fQ( u ) W ( xju ) ) ; u 2 X ; x 2 X g o n X £ X is : D ( Q ± P kQ ± W ) = D ( P kW jQ ) 4= X u2X ;x2X Q( u ) P ( xju ) lo g P ( xju ) W ( xju ) : Th e in fo r m a t io n a l d ive r g e n c e o f P D P a n d P D Q o n X is : D ( QkQl ) 4 = X x2X Q ( x) lo g Q ( x ) Ql ( x) : Fo r p r o o fs we will u s e t h e m e t h o d o f t yp e s , wh ic h is a n im p o r t a n t t e c h n ic a l t o o l in In fo r m a - t io n Th e o r y. L e t u s n a m e t h e s e c o n d o r d e r t yp e o f t h e Ma r ko v ve c t o r x t h e s qu a r e m a t r ix o f jX j2 r e la t ive fr e qu e n c ie s fN ( u; x ) N ¡1; x; u 2 X g o f t h e s im u lt a n e o u s a p p e a r a n c e o n t h e p a ir s o f n e ig h b o r p la c e s o f t h e s t a t e s u a n d x. It is c le a r t h a t P ux N ( u; x) = N. E. Haroutunian, P. Hakobyan and A. Yesayan 6 5 D e n o t e b y T NQ±P t h e s e t o f ve c t o r s fr o m X N +1 wh ic h h a ve s u c h a t yp e t h a t fo r t h e jo in t P D Q ± P , N ( u; x ) = NQ( u ) P ( xju ) ; x; u 2 X : W e will u s e t h e fo llo win g p r o p e r t ie s o f t yp e s o f s e c o n d o r d e r [1 3 ]{ [1 5 ]: t h e n u m b e r jT NQ±P j o f ve c t o r s in T NQ±P is t h e fo llo win g jT NQ±P j = e xp fNHQ±P ( X ) + o( 1 ) g; wit h o ( 1 ) ! 0 ; wh e n N ! 1; ( 1 ) a n d t h e n u m b e r o f e le m e n t s o f s e t s T NQ±P fo r d i®e r e n t P D s Q ± P d o e s n o t e xc e e d ( N + 1 ) jX j 2 . Th e p r o b a b ilit y o f t h e ve c t o r x 2 X N +1 o f t h e Ma r ko v c h a in wit h t r a n s it io n p r o b a b ilit ie s Gl a n d s t a t io n a r y d is t r ib u t io n Ql is d e ¯ n e d a s fo llo ws : Ql ± GNl ( x ) 4 = Ql ( x0 ) NY n=1 Gl ( xnjxn¡1 ) ; l = 1 ; L; Ql ± GNl ( A ) 4 = [ x2A Ql ± GNl ( x) ; A ½ X N +1: Th e p r o b a b ilit y o f t h e ve c t o r x fr o m T NQ±P fo r l = 1 ; L, c a n b e wr it t e n a ls o in t h e fo llo win g fo r m : Ql ± GNl ( x ) = Ql ( x0 ) Y u;x Gl ( xju ) NQ(u)P (xju) = Ql ( x0 ) e xp fN X x;u Q ( u) P ( xju ) lo g Gl ( xju) g = Ql ( x0 ) e xp ( ¡N X x;u Q( u ) P ( xju ) " lo g P ( xju) Gl ( xju ) ¡ lo g P ( xju ) #) ( 2 ) = e xp f¡N [D ( Q ± P kQ ± Gl ) ¡ HQ±P ( X ) ¡ o ( 1 ) ]g ; wh e r e o( 1 ) ! 0 , wh e n N ! 1. A c c o r d in g t o ( 1 ) a n d ( 2 ) we o b t a in Ql ± GNl ( T NQ±P ) = e xp f¡N [D ( Q ± P kQ ± Gl ) + o ( 1 ) ]g : ( 3 ) 3 . Fir s t S t a g e Te s t o f Two S t a g e s Th e ¯ r s t s t a g e o f d e c is io n m a kin g c o n s is t s in u s in g t h e s a m p le x fo r t h e s e le c t io n o f o n e fa m ily o f t wo o f P D s b y a t e s t 'N1 ( x) ; wh ic h c a n b e d e ¯ n e d b y t h e d ivis io n o f t h e s a m p le s p a c e X N in t o t h e p a ir o f d is jo in t s u b s e t s ANi 4 = fx : 'N1 ( x) = ig , i = 1 ; 2 : Th e s e t ANi c o n s is t s o f a ll ve c t o r s x fo r wh ic h i-t h fa m ily Pi o f P D s is a d o p t e d . In fa c t t h is is t h e p r o b le m o f t wo c o m p o s it e h yp o t h e s e s t e s t in g s t u d ie d in [9 , 1 0 ]. A t t h e s a m e t im e t h e ¯ r s t s t a g e t e s t o f t wo s t a g e s is c o n n e c t e d wit h t h e id e n t ī c a t io n p r o c e d u r e wh ic h wa s c o n s id e r e d in [2 1 ]{ [2 6 ]. Th e t e s t 'N1 ( x) c a n h a ve t wo kin d s o f e r r o r s fo r t h e p a ir o f h yp o t h e s e s Pi; i = 1 ; 2 . L e t ®02j1 ( ' N 1 ) b e t h e p r o b a b ilit y o f t h e e r r o n e o u s a c c e p t a n c e o f t h e s e c o n d fa m ily P2 p r o vid e d t h a t t h e ¯ r s t fa m ily P1 is t r u e ( t h a t is t h e c o r r e c t P D is in t h e ¯ r s t fa m ily) a n d ®01j2 ( 'N1 ) b e t h e p r o b a b ilit y o f t h e e r r o n e o u s a c c e p t a n c e o f P1 p r o vid e d t h a t t h e s e c o n d fa m ily P2 is t r u e . W e d e ¯ n e ®02j1 ( ' N 1 ) 4 = ®01j1 ( ' N 1 ) 4 = m a x r:r=1;R Qr ± GNr ( AN2 ) ; ( 4 ) 6 6 On LAO Two-stage Testing of Multiple Hypotheses Concerning Markov Chain ®01j2 ( ' N 1 ) 4 = ®02j2 ( ' N 1 ) 4 = m a x l:l=R+1;L Ql ± GNl ( AN1 ) : ( 5 ) Th e c o r r e s p o n d in g r e lia b ilit ie s a r e d e ¯ n e d fo r in ¯ n it e s e qu e n c e '1 o f t e s t s : E0ijj ( '1 ) 4 = lim in f N!1 ½ ¡ 1 N lo g ®0ijj ( ' N 1 ) ¾ ; i; j = 1 ; 2 ; i 6= j: ( 6 ) Th e t e s t s e qu e n c e '1 is c o n s id e r e d t o b e L A O if fo r t h e g ive n va lu e o f E 0¤ 2j1 it p r o vid e s t h e la r g e s t va lu e t o E 0¤ 1j2. Ou r a im is t o ¯ n d t h e r e lia b ilit y fu n c t io n E 0¤ 1j2 ( E 0 2j1 ) . Fo r t h e g ive n E 0¤ 2j1 we c a n d e ¯ n e L A O t e s t ' ¤N 1 b y d ivis io n o f X N in t o t h e fo llo win g t wo d is jo in t s u b s e t s BN1 = [ Q±P : D(QkQr )<1; m in r;r=1;R D(Q±P kQ±Gr)·E0¤2j1 T NQ±P ; a n d BN2 = X N n BN1 : T heor em 1: F or any E02j1 > 0 the reliability function E 0¤ 1j2 ( E 0 2j1 ) of the L AO test for testing many hypotheses Gl, l = 1 ; L, concerning M arkov chains is given as follows: E 0¤ 1j2 ( E 0¤ 2j1 ) = m in l: l=R+1;L in f Q±P : D(QkQr)<1; m in r: r=1;R D(Q±P kQ±Gr)·E0¤2j1 D ( Q ± P kQ ± Gl ) : P r oof: Fr o m t h e e s t im a t io n s o f t h e c o r r e s p o n d in g e r r o r p r o b a b ilit ie s u s in g ( 3 ) it fo llo ws : ®02j1 ( ' N 1 ) = m a x r: r=1;R Qr ± GNr ( BN2 ) · m a x r: r=1;R ( N + 1 ) jX j 2 m a x Q±P : D(QkQr )<1; m in r;r=1;R D(Q±P kQ±Gr)>E0¤2j1 Qr ± GNr ( T NQ±P ) · m a x r: r=1;R m a x Q±P : D(QkQr)<1; m in r;r=1;R D(Q±P kQ±Gr)>E0¤2j1 e xp f¡N [D ( Q ± P kQ ± Gr ) + o ( 1 ) ]g · e xp f¡N[ m in r: r=1;R m in Q±P : D(QkQr)<1; m in r;r=1;R D(Q±P kQ±Gr)>E0¤2j1 D ( Q ± P kQ ± Gr ) + o( 1 ) ]g · e xp n ¡N h E 0¤ 2j1 + o ( 1 ) io ; Fo r ®01j2 ( ' N 1 ) we h a ve t h e fo llo win g e s t im a t io n : ®01j2 ( ' N 1 ) = m a x l:l=R+1;L Ql ± GNl ( BN2 ) · ( N + 1 ) jX j2 m a x l:l=R+1;L m a x Q±P : D(QkQr )<1; m in r;r=1;R D(Q±P kQ±Gr)·E0¤2j1 Ql ± GNl ( T NQ±P ) · m a x l:l=R+1;L m a x Q±P : D(QkQr )<1; m in r;r=1;R D(Q±P kQ±Gr)·E0¤2j1 e xp f¡N[D ( Q ± P kQ ± Gl ) + o ( 1 ) ]g = e xp f¡N[ m in l:l=R+1;L m in Q±P : D(QkQr)<1; m in r;r=1;R D(Q±P kQ±Gr)·E0¤2j1 D ( Q ± P kQ ± Gl ) + o( 1 ) ]g: N o w le t u s p r o ve t h e in ve r s e in e qu a lit y fo r ®01j2 ( ' N 1 ) : E. Haroutunian, P. Hakobyan and A. Yesayan 6 7 ®01j2 ( ' N 1 ) = m a x l:l=R+1;L Ql ± GNl ( BN2 ) ¸ m a x l:l=R+1;L m a x Q±P : D(QkQr)<1; m in r;r=1;R D(Q±P kQ±Gr)·E0¤2j1 Ql ± GNl ( T NQ±P ) = m a x l:l=R+1;L m a x Q±P : D(QkQr)<1; m in r;r=1;R D(Q±P kQ±Gr)·E0¤2j1 e xp f¡N [D ( Q ± P kQ ± Gl ) + o( 1 ) ]g = e xp f¡N[ m in l:l=R+1;L m in Q±P : D(QkQr)<1; m in r;r=1;R D(Q±P kQ±Gr)·E0¤2j1 D ( Q ± P kQ ± Gl ) + o ( 1 ) ]g: A c c o r d in g t o t h e d e ¯ n it io n s o f t h e c o r r e s p o n d in g r e lia b ilit ie s we o b t a in t h e p r o o f o f t h e t h e o r e m . 4 . S e c o n d S t a g e Te s t o f Two S t a g e s A ft e r s e le c t in g a fa m ily o f P D s fr o m t h e t wo , it is n e c e s s a r y t o d e t e c t o n e P D in t h is fa m ily. If t h e ¯ r s t fa m ily o f P D s is a c c e p t e d , we c o n s id e r t h e t e s t 'N2 ( x) wh ic h c a n b e d e ¯ n e d b y t h e d ivis io n o f t h e s a m p le s p a c e B1 t o R d is jo in t s u b s e t s C Nr 4 = fx : 'N2 ( x) = rg; r = 1 ; R: L e t ®00ljr ³ 'N2 ´ b e t h e p r o b a b ilit y o f t h e e r r o n e o u s a c c e p t a n c e a t t h e s e c o n d s t a g e o f t h e t e s t , in wh ic h P D Gl is a c c e p t e d wh e n Gr is t r u e : ®00ljr ³ 'N2 ´ 4 = Ql ± GNr ³ C Nl ´ ; r = 1 ; R; l = 1 ; L: Th e p r o b a b ilit y t o r e je c t Gr, wh e n it is t r u e , is ®00rjr ³ 'N2 ´ 4 = Qr ± GNr ³ C Nr ´ = RX l=1; l 6=r ®00ljr ³ 'N2 ´ + Qr ± GNr ( BN2 ) ; r = 1 ; R: ( 7 ) Th e c o r r e s p o n d in g r e lia b ilit ie s fo r t h e s e c o n d s t a g e o f t h e t e s t a r e d e ¯ n e d a s : E00ljr ( '2 ) 4 = lim in f N !1 ½ ¡ 1 N lo g ®00ljr ³ 'N2 ´¾ ; r = 1 ; R; l = 1 ; L: ( 8 ) U s in g t h e p r o p e r t ie s o f t yp e s t h e fo llo win g e qu a lit ie s a r e d e r ive d fo r e a c h r = 1 ; R: EI2jr 4 = lim N !1 ½ ¡ 1 N lo g h Qr ± GNr ( BN2 ) i¾ = in f Q±P : D(QkQr)<1; m in r;r=1;R D(Q±P kQ±Gr )>E0¤2j1 D ( Q ± P kQ ± Gr ) : ( 9 ) Fr o m ( 7 ) { ( 9 ) it fo llo ws t h a t E00rjr ( '2 ) = m in " m in l=1;R E00ljr ( '2 ) ; E I 2jr # ; r = 1 ; R: 6 8 On LAO Two-stage Testing of Multiple Hypotheses Concerning Markov Chain Remar k 1: If at the ¯rst stage the ¯rst family of P D s is accepted, when our decision in the ¯rst stage is true, but we have an error in the second stage, the reliabilities of the corresponding error probabilities are E00ljr, r; l = 1 ; R. W hen our wrong decision comes from the ¯rst stage, the corresponding reliabilities are E00ljr, l = 1 ; R, r = R + 1 ; L. In t h is c a s e t h e r e lia b ilit y m a t r ix fo r t h e s e c o n d s t a g e o f t h e t e s t E 00 ( '2 ) is t h e fo llo win g : 2 666666666666664 E001j1 E 00 2j1 : : : E 00 Rj1 E001j2 E 00 2j2 : : : E 00 Rj2 : : : : : : : : : : : : E001jR E 00 2jR : : : E 00 RjR E001jR+1 E 00 2jR+1 : : : E 00 RjR+1 E001jR+2 E 00 2jR+2 : : : E 00 RjR+2 : : : : : : : : : : : : E001jL E 00 2jL : : : E 00 RjL 3 777777777777775 : If t h e s e c o n d fa m ily o f P D s is a c c e p t e d , t h e n t h e t e s t 'N2 ( x) is a d ivis io n o f t h e s a m p le s p a c e A2 t o L¡R d is jo in t s u b s e t s . Th e d e ¯ n it io n s o f e r r o r p r o b a b ilit ie s a n d t h e c o r r e s p o n d - in g r e lia b ilit ie s a r e s im ila r t o t h e a b o ve c o n s id e r e d c a s e . U s in g t h e p r o p e r t ie s o f t yp e s ( like in t h e p r o o f o f Th e o r e m 1 ) t h e fo llo win g e qu a lit ie s a r e d e r ive d fo r e a c h l = R + 1 ; L: EII2jl 4 = lim N !1 ½ ¡ 1 N lo g h Ql ± GNl ( BN1 ) i¾ = in f Q±P : D(QkQr)<1; m in r;r=1;R D(Q±P kQ±Gr )·E0¤2j1 D ( Q ± P kQ ± Gl ) : ( 1 0 ) Remar k 2: If at the ¯rst stage, the second family of P D s is accepted, when our decision in the ¯rst stage is true, but we have an error in the second stage, the reliabilities of the corresponding error probabilities are E00ljr, r; l = R + 1 ; l. W hen our wrong decision comes from the ¯rst stage, the corresponding reliabilities are E00ljr, l = R + 1 ; l, r = 1 ; R. In t h is c a s e t h e r e lia b ilit y m a t r ix fo r t h e s e c o n d s t a g e o f t h e t e s t E 00 ( '2 ) is t h e fo llo win g : 2 666666666666664 E00R+1j1 E 00 R+2j1 : : : E 00 Lj1 E00R+1j2 E 00 R+2j2 : : : E 00 Lj2 : : : : : : : : : : : : E00R+1jR E 00 R+2jR : : : E 00 LjR E00R+1jR+1 E 00 R+2jR+1 : : : E 00 LjR+1 E00R+1jR+2 E 00 R+2jR+2 : : : E 00 LjR+2 : : : : : : : : : : : : E00R+1jL E 00 R+2jL : : : E 00 LjL 3 777777777777775 : In t h e fo llo win g t h e o r e m s we s h o w t h e o p t im a l d e p e n d e n c e o f r e lia b ilit ie s . T heor em 3: If in the ¯rst stage the ¯rst family of P D s of M arkov chain is accepted, then for the given positive and ¯nite values E001j1; E 00 2j2; :::; E 00 R¡1jR¡1, satisfying the following compatibility conditions 0 < E001j1 < m in r=2;R [D ( Qr ± GrkQr ± G1 ) ] ; E. Haroutunian, P. Hakobyan and A. Yesayan 6 9 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 < E00rjr < m in [ m in 1·l E02j1; D ( Q±P kQ±Gl ) · E00ljl; D ( QkQl ) < 1g; ( 1 9 ) R00L 4 = fQ±P : m in r=1;R D ( Q±P kQ±Gr ) > E02j1; D ( Q±P kQ±Gl ) ¸ E00ljl; l = R + 1 ; L ¡ R ¡ 1 g: ( 2 0 ) W hen even one of the compatibility conditions is violated, then at least one element of the matrix E ( '¤2 ) is equal to 0 . Th e p r o o fs o f Th e o r e m s 3 a n d 4 a r e s im ila r t o t h e p r o o f o f Th e o r e m 1 fr o m [1 5 ]. 7 0 On LAO Two-stage Testing of Multiple Hypotheses Concerning Markov Chain 5 . Co m p a r is o n o f R e lia b ilit ie s o f Two -s t a g e Te s t W it h R e lia b ilit ie s o f On e - s t a g e Te s t In t h is s e c t io n we will c o m p a r e t h e r e lia b ilit ie s o f o n e s t a g e t e s t c o n s id e r e d in [1 5 ] a n d t h o s e o f t h e t wo -s t a g e t e s t d e ¯ n e d in t h is p a p e r . Fr o m t h e r e s u lt s o f t h e ¯ r s t a n d t h e s e c o n d s t a g e s we c a n o b t a in t h e ¯ n a l r e lia b ilit ie s E 000 ljr ( ©) , l = 1 ; L. Fr o m R e m a r ks 1 a n d 2 it fo llo ws , t h a t wh e n c o m p a t ib ilit y c o n d it io n s in Th e o r e m s 1 , 3 a n d 4 , a r e s a t is ¯ e d t h e n E 000 ljr ( ©) = E 00 ljr, l = 1 ; L. Fo r c o m p a r is o n we will t a ke e qu a l d ia g o n a l e le m e n t s Eljl = E 000 ljl, l = 1 ; L ¡ 1 o f t h e r e lia b ilit y m a t r ic e s o f o n e -s t a g e a n d t wo -s t a g e c a s e s . Th e c o r r e s p o n d in g e le m e n t s o f t h e c o lu m n r = 1 ; R ¡ 1 S R + 1 ; L ¡ 1 o f o n e -s t a g e m a t r ix a n d t wo -s t a g e m a t r ix a r e e qu a l. Th e e le m e n t s o f t h o s e c o lu m n s a r e fu n c t io n s o f d ia g o n a l e le m e n t s o f t h e c o r r e s p o n d in g c o lu m n s a n d fo r m u la s o f t h o s e fu n c t io n s a r e t h e s a m e fo r t h e o n e -s t a g e a n d t wo s t a g e t e s t s . W h e n we g ive t h e s a m e va lu e s t o d ia g o n a l e le m e n t s o f t h e r e lia b ilit y m a t r ic e s o f t wo -s t a g e a n d o n e -s t a g e c a s e s , t h e va lu e s o f t h o s e fu n c t io n s a r e e qu a l. Th e e le m e n t s o f R-t h a n d S-t h c o lu m n s o f t wo -s t a g e r e lia b ilit ie s m a t r ix c a n b e s m a lle r o r g r e a t e r t h a n t h e c o r r e s p o n d in g e le m e n t s o f o n e -s t a g e m a t r ix. Th e n u m b e r o f o p e r a t io n s fo r r e a liz a t io n o f t wo -s t a g e L A O t e s t is le s s t h a n t h a t o f o n e - s t a g e L A O t e s t . 6 . Co n c lu s io n In t h is p a p e r we c o n s id e r e d t wo -s t a g e m u lt ih yp o t h e s e s t e s t in g h a s a n y a d va n t a g e fo r Ma r ko v c h a in . In t h is t e s t in g t h e s a m p le s e t is d ivid e d in t o R+2 o r L¡R+2 s u b s e t s , s o t h e p r o c e d u r e o f t wo -s t a g e t e s t in g is s h o r t e r , t h a n o n e -s t a g e t e s t in g , in wh ic h t h e s a m p le s p a c e wa s d ivid e d in t o L d is jo in t s u b s e t s . W e a ls o s h o w, t h a t t h e n u m b e r o f p r e lim in a r y g ive n e le m e n t s o f t h e r e lia b ilit ie s m a t r ix in t wo -s t a g e a n d o n e -s t a g e t e s t s wo u ld b e t h e s a m e b u t t h e p r o c e d u r e o f c a lc u la t io n s fo r t h e ¯ r s t o n e wo u ld b e s h o r t e r . A s in [1 ] we c a n a ls o c o n s id e r t h e t wo -s t a g e L A O t e s t b y t h e p a ir o f s a m p le s x = ( x1; x2 ) 2 X N , x1 = ( x1; x2; : : : ; xN1 ) ; x1 2 X N1 ; x2 = ( xN1+1; xN1+2; : : : ; xN ) ; x2 2 X N2; N = N1+N2, X N = X N1 £ X N2 . Th e ¯ r s t s t a g e u s in g t h e s a m p le x1 s e le c t s o n e o f t h e fa m ilie s P1 o r P2 a ft e r t h a t u s in g t h e s a m p le x2 t h e s e c o n d s t a g e s e le c t s o n e P D in t h is fa m ily. A c kn o wle d g e m e n t Th is wo r k wa s s u p p o r t e d in p a r t b y S CS o f ME S o f R A u n d e r Th e m a t ic P r o g r a m N o S CS 1 3 { 1 A 2 9 5 . Refer ences [1 ] E . H a r o u t u n ia n , P . H a ko b ya n a n d F. H o r m o z i n e ja d , \ On Two -s t a g e L A O t e s t in g o f m u lt ip le h yp o t h e s e s fo r t h e fa m ilie s o f d is t r ib u t io n s " , International J ournal of Ststistics and E conometrics M ethods, vo l. 2 , n o . 2 , p p . 1 2 7 { 1 5 6 , 2 0 1 3 . [2 ] E . L . L e h m a n n a n d J. P . R o m a n o , Testing Statistical Hypotheses, Th ir d E d it io n . S p r in g e r , N e w Y o r k, 2 0 0 5 . E. Haroutunian, P. Hakobyan and A. Yesayan 7 1 [3 ] W . H o e ®d in g , \ A s ym p t o t ic a lly o p t im a l t e s t s fo r m u lt in o m ia l d is t r ib u t io n s " , Annals of M athematical Statistics. vo l. 3 6 , p p . 3 6 9 { 4 0 1 , 1 9 6 5 . [4 ] I. Cs is z ¶a r a n d G. L o n g o , \ On t h e e r r o r e xp o n e n t fo r s o u r c e c o d in g a n d fo r t e s t in g s im p le s t a t is t ic a l h yp o t h e s e s " , Studia Scientiarum M athematicarum Hungarica, vo l. 6 , p p . 1 8 1 { 1 9 1 , 1 9 7 1 . [5 ] G. Tu s n ¶a d y, \ On a s ym p t o t ic a lly o p t im a l t e s t s " , Annals of Statatistics, vo l. 5 , n o . 2 , p p . 3 8 5 -3 9 3 , 1 9 7 7 . [6 ] G. Tu s n ¶a d y, \ Te s t in g s t a t is t ic a l h yp o t h e s e s ( a n in fo r m a t io n t h e o r e t ic a p p r o a c h ) " , P reprint of the M athematical Institute of the Hungarian Academy of Sciences, B u - d a p e s t ( P a r t 1 , 1 9 7 9 , P a r t 2 , 1 9 8 2 ) . [7 ] G. L o n g o a n d A . S g a r r o , \ Th e e r r o r e xp o n e n t fo r t h e t e s t in g o f s im p le s t a t is t ic a l h yp o t h e s e s : A c o m b in a t o r ia l a p p r o a c h " , J ournal of Combinatorics, Information and System Sciences, vo l. 5 , n o . 1 , p p . 5 8 -6 7 , 1 9 8 0 . [8 ] L . B ir g ¶ e , \ V it e s s e s m a xim a ls d e d ¶ c r o is s e n c e d e s e r r e u r s e t t e s t s o p t im a u x a s s o c ie ¶ s " , Z. W a h r s c h . V e r w. Ge b ie t e , vo l. 5 5 , p p . 2 6 1 { 2 7 3 , 1 9 8 1 . [9 ] M. Fe d e r a n d N . Me r h a v, \ U n ive r s a l c o m p o s it h yp o t h e s is t e s t in g : a c o m p e t it it ve m in im a x a p p r o a c h " , IE E E Transactions on Information Theory, vo l. 4 8 , n o . 6 , p p . 1 5 0 4 -1 5 1 7 , 2 0 0 2 . [1 0 ] E . L e vit a n a n d N . Me r h a v, \ A c o m p e t it ive N e ym a n -P e a r s o n a p p r o a c h t o u n ive r s a l h yp o t h e s is t e s t in g wit h a p p lic a t io n s " , IE E E Transactions on Information Theory, vo l. 4 8 , n o . 8 , p p . 2 2 1 5 -2 2 2 9 , 2 0 0 2 . [1 1 ] S . N a t a r a ja n , \ L a r g e d e via t io n s , h yp o t h e s e s t e s t in g , a n d s o u r c e c o d in g fo r ¯ n it e Ma r ko v c h a in s ," IE E E Transactions on Information Theory, vo l. 3 1 , n o . 3 , p p . 3 6 0 -3 6 5 , 1 9 8 5 . [1 2 ] E . A . H a r o u t u n ia n , \ L o g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f m u lt ip le s t a t is - t ic a l h yp o t h e s e s ," P roblems of Control and Information Theory, vo l. 1 9 , n o . 5 { 6 , p p . 4 1 3 -4 2 1 , 1 9 9 0 . [1 3 ] E . H a r o u t u n ia n , M. H a r o u t u n ia n a n d A . H a r u t yu n ya n , \ R e lia b ilit y Cr it e r ia in In - fo r m a t io n Th e o r y a n d in S t a t is t ic a l H yp o t h e s is Te s t in g " , F oundations and Trends in Communications and Information Theory, vo l. 4 , n o . 2 -3 , 2 0 0 8 . [1 4 ] E . A . H a r o u t u n ia n , \ Ma n y s t a t is t ic a l h yp o t h e s e s : in t e r d e p e n d e n c e o f o p t im a l t e s t 's e r r o r p r o b a b ilit ie s e xp o n e n t s " ( in R u s s ia n ) , Abstract of the report on the 3rd All-Union school-seminar, \P rogram-algorithmical software for applied multi-variate statistical analysis", Tsakhkadzor, P a r t 2 , p p . 1 7 7 { 1 7 8 , 1 9 8 8 . [1 5 ] E . H a r o u t u n ia n , \ On a s ym p t o t ic a lly o p t im a l c r it e r ia fo r Ma r ko v c h a in s " , ( in R u s s ia n ) , F irst W orld Congress of B ernoulli Society, vo l. 2 , n o . 3 , p p . 1 5 3 { 1 5 6 , 1 9 8 9 . [1 6 ] E . A . H a r o u t u n ia n , \ A s ym p t o t ic a lly o p t im a l t e s t in g o f m a n y s t a t is t ic a l h yp o t h e s e s c o n c e r n in g Ma r ko v Ch a in " ( in R u s s ia n ) , 5-th International Vilnius Conferance on P robability Theory and M athem. Statistics, vo l. 1 , ( A -L ) , p p . 2 0 2 { 2 0 3 , 1 9 8 9 . [1 7 ] E . H a r o u t u n ia n , \ R e lia b ilit y in m u lt ip le h yp o t h e s e s t e s t in g a n d id e n t ī c a t io n p r o b - le m " , in D ata F usion for Situation M onitoring, Incident D etection, Alert and R espons M anagement, NATO Science Series: Computer and System Sciences, IOS P r e s s , vo l. 1 9 8 , p p . 1 8 9 { 2 0 1 , 2 0 0 5 . [1 8 ] E . H a r o u t u n ia n a n d P . H a ko b ya n , \ On m u lt ip le h yp o t h e s e s t e s t in g fo r m a n y in d e p e n - d e n t o b je c t s " , VII International School-seminar \M ultidementional statistical analysis and econometrics", p p . 7 8 ,7 9 , Ts a kh a d z o r , 2 0 0 8 . 7 2 On LAO Two-stage Testing of Multiple Hypotheses Concerning Markov Chain [1 9 ] E . H a r o u t u n ia n a n d N . Gr ig o r ya n , \ On r e lia b ilit y a p p r o a c h fo r t e s t in g o f m a n y d is - t r ib u t io n s fo r p a ir o f Ma r ko v c h a in s " , Transactions of IIAP NAS R A, M athematical P roblems of Computer Science, vo l. 2 9 , p p . 9 9 -9 6 , 2 0 0 7 . [2 0 ] E . H a r o u t u n ia n a n d N . Gr ig o r ya n , \ On a r b it r a r ily va r yin g Ma r ko v s o u r c e c o d in g a n d h yp o t h e s is L A O t e s t in g b y n o n -in fo r m e d s t a t is t ic ia n " , P roc. of IE E E Internatioan Symposium Information Theory, S e o u l, S o u t h K o r e a , p p . 9 8 1 -9 8 5 , 2 0 0 9 . [2 1 ] R . F. A h ls we d e a n d E . A . H a r o u t u n ia n , \ On lo g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f h yp o t h e s e s a n d id e n t i¯ c a t io n " , L ecture Notes in Computer Science, vol. 4123, \General Theory of Information Transfer and Combinatorics", S p r in g e r V e r la g , p p . 4 6 2 { 4 7 8 , 2 0 0 6 . [2 2 ] E . A . H a r o u t u n ia n a n d P . M. H a ko b ya n , \ R e m a r ks a b o u t r e lia b le id e n t i¯ c a t io n o f p r o b a b ilit y d is t r ib u t io n s o f t wo in d e p e n d e n t o b je c t s " , Transactions of IIAP of NAS of R A, M athematical P roblems of Computer Science. vo l. 3 3 , p p . 9 1 { 9 4 , 2 0 1 0 [2 3 ] E . A . H a r o u t u n ia n , A . O. Y e s s a ya n a n d P . M. H a ko b ya n , \ On r e lia b ilit y a p p r o a c h t o m u lt ip le h yp o t h e s e s t e s t in g a n d id e n t i¯ c a t io n o f p r o b a b ilit y d is t r ib u t io n s o f t wo s t o c h a s t ic a lly c o u p le d o b je c t s " , International J ournal \Informations Theories and Ap- plications", vo l. 1 7 , n o . 3 , p p . 2 5 9 { 2 8 8 , 2 0 1 0 . [2 4 ] E . A . H a r o u t u n ia n a n d A . O. Y e s s a ya n , \ On r e lia b ilit y a p p r o a c h t o m u lt ip le h yp o t h e s e s t e s t in g a n d t o id e n t ī c a t io n o f p r o b a b ilit y d is t r ib u t io n s o f t wo s t o c h a s t ic a lly r e la t e d o b je c t s " , P roc. of IE E E Internation Sympos. Information Theory, S e in t -P e t e r b u r g , R u s s ia , p p . 2 6 7 1 -2 6 7 5 , 2 0 1 1 . [2 5 ] E . A . H a r o u t u n ia n a n d L . N a va e i, \ On o p t im a l id e n t ī c a t io n o f Ma r ko v c h a in d is t r ib u - t io n s s u b je c t t o t h e r e lia b ilit y c r it e r io n " , Transactions of IIAP NAS R A, M athematical P roblems of Computer Science, vo l. 3 2 , p p .6 6 { 7 0 , 2 0 0 9 . [2 6 ] L . N a va e i, \ On r e lia b le id e n t i¯ c a t io n o f t wo in d e p e n d e n t Ma r ko v c h a in d is t r ib u t io n s " , Transactions of IIAP NAS R A, M athematical P roblems of Computer Science, vo l. 3 2 , p p .7 4 { 7 7 , 2 0 0 9 . Submitted 12.01.2014, accepted 07.03.2014. سñÏáíÛ³Ý ßÕóÛÇ í»ñ³µ»ñÛ³É µ³½Ù³ÏÇ í³ñϳÍÝ»ñÇ »ñÏ÷áõÉ È²ú ï»ëï³íáñáõÙ º. гñáõÃÛáõÝÛ³Ý, ö. гÏáµÛ³Ý ¨ ². ºë³Û³Ý ²Ù÷á÷áõÙ ¸Çï³ñÏí»É ¿ ³ÝóáõÙ³ÛÇÝ µ³ßËáõÙÝ»ñÇ »ñÏáõ ÁÝï³ÝÇùÝ»ñáí µÝáõó·ñíáÕ Ø³ñÏáíÛ³Ý ßÕóÛÇ í»ñ³µ»ñÛ³É µ³½Ù³ÏÇ íÇ׳ϳ·ñ³Ï³Ý í³ñϳÍÝ»ñÇ ëïáõ·Ù³Ý ·áñÍÁÝóóÁ: àõëáõÙݳëÇñí»É ¿ »ñÏáõ ÷áõÉ»ñÇ Éá·³ñÇÃÙáñ»Ý ³ëÇÙïáïáñ»Ý ûåïÇÙ³É ï»ëï³íáñÙ³Ý ë˳ÉÝ»ñÇ Ñáõë³ÉÇáõÃÛáõÝÝ»ñÇ Ù³ïñÇóÁ ¨ ³ÛÝ Ñ³Ù»Ù³ïí»É ¿ Ùdz÷áõÉ ï»ëïÇ Ñáõë³ÉÇáõÃÛ³Ý Ù³ïñÇóÇ Ñ»ï: òáõÛó ¿ ïñí»É, áñ »ñÏ÷áõÉ ï»ëïÁ å³Ñ³ÝçáõÙ ¿ ³í»ÉÇ ùÇã ·áñÍáÕáõÃÛáõÝ, ù³Ý Ùdz÷áõÉ ï»ëïÁ: E. Haroutunian, P. Hakobyan and A. Yesayan 7 3 Î äâóõýòàïíîì ËÀÎ òåñòèðîâàíèè ìíîãèõ ãèïîòåç îòíîñèòåëüíî Ìàðêîâñêîé öåïè Å. Àðóòþíÿí, Ï. Àêîïÿí è À. Åñàÿí Àííîòàöèÿ Ðàññìîòðåíî òåñòèðîâàíèå öåïè Ìàðêîâà õàðàêòåðèçóþùåéñÿ äâóìÿ ñåìåéñò- âàìè âîçìîæíûõ ïåðåõîäíûõ âåðîÿòíîñòåé. Ìàòðèöà íàäåæíîñòåé ëîãîðèôìè- ÷åñêè àñèìïòîòè÷åñêè îïòèìàëüíîãî òåñòèðîâàíèÿ â äâà ýòàïà èçó÷åíà è ñðàâíåíà ñî ñëó÷àåì àíàëîãè÷íîãî îäíîýòàïíîãî òåñòèðîâàíèÿ. Ïîêàçàíî, ÷òî äâóõýòàïíîå òåñòèðîâàíèå òðåáóåò ìåíøüå îïåðàöèè, ÷åì îäíîýòàïíîå.