D:\sbornik\...\Article.DVI Mathematical Problems of Computer Science 40, 13{22, 2013. N on-hamiltonian Gr aphs with Given T oughness Zh o r a G. N iko g h o s ya n 1 Institute for Informatics and Automation Problems of NAS RA e-mail: zhora@ipia.sci.am Abstract In 1973, Chv¶atal introduced the concept of toughness ¿ of a graph and conjec- tured that there exists a ¯nite constant t0 such that every t0-tough graph (that is ¿ ¸ t0) is hamiltonian. To solve this challenging problem, all e®orts are directed to- wards constructing non-hamiltonian graphs with toughness as large as possible. The last result in this direction is due to Bauer, Broersma and Veldman, which states that for each positive ², there exists a non-hamiltonian graph with 9 4 ¡ ² · ¿ < 9 4 . The following related broad-scale problem, reminding the well-known pancyclicity or hypo- hamiltonicity, arises naturally: whedher there exists a non-hamiltonian graph with a given toughness. We conjecture that if there exist a non-hamiltonian t-tough graph then for each rational number a with 0 < a · t there exists a non-hamiltonian graph whose toughness is exactly a. In this paper we prove this conjecture for t = 9 4 ¡ ² by using a number of additional modi¯ed building blocks to construct the required graphs. Keywords: Hamilton cycle, Toughness of graph. 1 . In t r o d u c t io n On ly ¯ n it e u n d ir e c t e d g r a p h s wit h o u t lo o p s o r m u lt ip le e d g e s a r e c o n s id e r e d . Th e s e t o f ve r t ic e s o f a g r a p h G is d e n o t e d b y V ( G) a n d t h e s e t o f e d g e s - b y E ( G ) . Th e o r d e r a n d t h e in d e p e n d e n c e n u m b e r o f G a r e d e n o t e d b y n a n d ®, r e s p e c t ive ly. Fo r S a s u b s e t o f V ( G) , we d e n o t e b y GnS t h e s u b g r a p h o f G in d u c e d b y V ( G ) nS. Th e n e ig h b o r h o o d o f a ve r t e x x 2 V ( G) is d e n o t e d b y N ( x) . A g r a p h G is h a m ilt o n ia n if G c o n t a in s a H a m ilt o n c yc le , i.e . a c yc le o f le n g t h n. A g o o d r e fe r e n c e fo r a n y u n d e ¯ n e d t e r m s is [5 ]. Th e c o n c e p t o f t o u g h n e s s o f a g r a p h wa s in t r o d u c e d in 1 9 7 3 b y Ch v¶a t a l [6 ]. L e t ! ( G ) d e n o t e t h e n u m b e r o f c o m p o n e n t s o f a g r a p h G. A g r a p h G is t-t o u g h if jSj ¸ t! ( GnS ) fo r e ve r y s u b s e t S o f t h e ve r t e x s e t V ( G) wit h ! ( GnS ) > 1 . Th e t o u g h n e s s o f G, d e n o t e d ¿ ( G) , is t h e m a xim u m va lu e o f t fo r wh ic h G is t-t o u g h ( t a kin g ¿ ( Kn ) = 1 fo r a ll n ¸ 1 ) . Mu c h o f t h e r e s e a r c h o n t h is s u b je c t h a ve b e e n in s p ir e d b y t h e fo llo win g c o n je c t u r e d u e t o Ch v¶a t a l [6 ]. Conjectur e 1: There exists a ¯nite constant t0 such that every t0-tough graph is hamil- tonian. To s o lve t h is c h a lle n g in g p r o b le m , a ll e ®o r t s a r e d ir e c t e d t o wa r d s c o n s t r u c t in g n o n - h a m ilt o n ia n g r a p h s wit h t o u g h n e s s a s la r g e a s p o s s ib le . In [6 ], Ch v¶a t a l c o n s t r u c t e d a n in ¯ n it e fa m ily o f n o n -h a m ilt o n ia n g r a p h s wit h ¿ = 3 2 , a n d t h e n Th o m a s s e n [[4 ]; p: 1 3 2 ] fo u n d 1 G. G. Nicoghossian (up to 1997). 1 3 1 4 Non-hamiltonian Graphs with Given Toughness n o n -h a m ilt o n ia n g r a p h s wit h ¿ > 3 2 . L a t e r E n o m o t o e t a l. [7 ] h a ve fo u n d n o n -h a m ilt o n ia n g r a p h s wit h ¿ ¸ 2 ¡ ² fo r e a c h p o s it ive ². Th e la s t r e s u lt in t h is d ir e c t io n is d u e t o B a u e r , B r o e r s m a a n d V e ld m a n [2 ] in s p ir e d b y s p e c ia l c o n s t r u c t io n s in t r o d u c e d in [1 ] a n d [3 ]. T heor em A: F or each positive ² > 0 , there exists a non-hamiltonian graph with 9 4 ¡ ² < ¿ < 9 4 . Th e fo llo win g r e la t e d b r o a d -s c a le p r o b le m , r e m in d in g t h e we ll-kn o wn p a n c yc lic it y o r h yp o h a m ilt o n ic it y, a r is e s n a t u r a lly. P r oblem: D o e s t h e r e e xis t a n o n -h a m ilt o n ia n g r a p h wit h t h e g ive n t o u g h n e s s ? Th e fo llo win g m e t a c o n je c t u r e s e e m s r e a s o n a b le . Conjectur e 2: If there exists a non-hamiltonian t-tough graph then for each rational number a with 0 < a · t there exists a non-hamiltonian graph whose toughness is exactly a. In t h is p a p e r we p r o ve t h is c o n je c t u r e fo r t = 9 4 ¡ ². T heor em 1: F or each rational number t with 0 < t < 9 4 , there exists a non-hamiltonian graph G with ¿ ( G) = t. Th e o r e m 1 p r o vid e s a ls o a c o m p le t e b a c kg r o u n d fo r fu r t h e r in ve s t ig a t io n t o wa r d s ¯ n d in g n o n -h a m ilt o n ia n g r a p h s wit h t o u g h n e s s a t le a s t 9 4 . 2 . P r e lim in a r ie s To p r o ve Th e o r e m 1 , we n e e d b o t h n e w a n d o ld g r a p h c o n s t r u c t io n s . De¯nition 1. L e t L(1) b e a g r a p h o b t a in e d fr o m C8 = w1w2:::w8w1 b y a d d in g t h e e d g e s w2w4; w4w6; w6w8 a n d w2w8. P u t x = w1 a n d y = w5. Th is is t h e we ll-kn o wn b u ild in g b lo c k L u s e d t o o b t a in ( 9 4 ¡ ²) -t o u g h n o n -h a m ilt o n ia n g r a p h s ( s e e Fig u r e 1 in [2 ]) . In t h is p a p e r we will u s e a n u m b e r o f a d d it io n a l m o d ī e d b u ild in g b lo c ks . De¯nition 2: L et L(2) be the graph obtained from L(1) by deleting the edges w1w2, w2w8 and identifying w2 with w8. De¯nition 3: L et L(3) be the graph obtained from L(1) by adding a new vertex w9 and the edges w4w9, w6w9. De¯nition 4: L et L(4) be the graph obtained from the triangle w1w2w3w1 by adding the vertices w4; w5 and the edges w1w4, w3w5. P ut x = w4 and y = w5. De¯nition 5: F or each L 2 fL(1); L(2)g, de¯ne the graph G( L; x; y; l; m ) ( l; m 2 N ) as follows. Take m disjoint copies L1; L2; :::; Lm of L, with xi; yi the vertices in Li corresponding to the vertices x and y in L ( i = 1 ; 2 ; :::; m) . L et Fm be the graph obtained from L1 [ ::: [ Lm by adding all possible edges between the pairs of vertices in x1; :::; xm; y1; :::; ym. L et T = Kl and let G ( L; x; y; l; m ) be the join T _ Fm of T and Fm. Th e fo llo win g c a n b e c h e c ke d e a s ily. Claim 1: The vertices x and y are not connected by a Hamilton path of L(i) ( i = 1 ; 2 ; 3 ) . Th e p r o o f o f t h e fo llo win g r e s u lt o c c u r s in [1 ]. Claim 2: L et H be a graph and x; y two vertices of H which are not connected by a Hamilton path of H. If m ¸ 2 l + 1 then G ( H; x; y; l; m) is non-hamiltonian. 3 . P r o o f o f Th e o r e m 1 B y t h e d e ¯ n it io n , t h e t o u g h n e s s ¿ ( G) is a r a t io n a l n u m b e r . L e t t b e a n y r a t io n a l n u m b e r wit h 0 < t < 9 4 a n d le t t = a b fo r s o m e in t e g e r s a; b. Zh. Nikoghosyan 1 5 Case 1: 0 < a b < 1 . L e t Ka;b b e t h e c o m p le t e b ip a r t it e g r a p h G = ( V1; V2; E ) wit h ve r t e x c la s s e s V1 a n d V2 s u c h t h a t jV1j = a a n d jV2j = b. S in c e ab < 1 , we h a ve ®( G ) = b > ( a + b ) = 2 a n d t h e r e fo r e , Ka;b is a n o n -h a m ilt o n ia n g r a p h . Cle a r ly, ¿ · jV1j=! ( GnV1 ) = a=b. Ch o o s e S ½ V ( G) s u c h t h a t ¿ ( G) = jSj=! ( GnS ) . P u t S \ Vi = Si a n d jSij = si ( i = 1 ; 2 ) . If VinS 6= ; ( i = 1 ; 2 ) t h e n c le a r ly ! ( GnS ) = 1 , wh ic h is im p o s s ib le b y t h e d e ¯ n it io n . H e n c e , VinS = ; fo r s o m e i 2 f1 ; 2 g. Case 1.1: i = 2 . It fo llo ws t h a t ¿ = b + s1 a ¡ s1 ¸ b a : R e c a llin g t h a t ¿ · a b , we h a ve b2 · a2, c o n t r a d ic t in g t h e h yp o t h e s is a b < 1 . Case 1.2: i = 1 . It fo llo ws t h a t ¿ = s2 + a b ¡ s2 ¸ a b ; im p lyin g im m e d ia t e ly t h a t ¿ = a b . Case 2: a b = 1 . L e t G b e a g r a p h o b t a in e d fr o m C6 = v1v2:::v6v1 b y a d d in g a n e w ve r t e x v7 a n d t h e e d g e s v1v7; v4v7; v2v6. Cle a r ly, G is n o t h a m ilt o n ia n a n d ¿ ( G) = 1 . Case 3: 1 < a b < 3 2 . Case 3.1: a b < 3 2 ¡ 1 b . L e t V1; V2; V3 b e p a ir wis e d is jo in t s e t s o f ve r t ic e s : V1 = fx1; x2; :::; xa¡b+1g; V2 = fy1; y2; :::; ybg; V3 = fz1; z2; :::; zbg: Jo in e a c h xi t o a ll t h e o t h e r ve r t ic e s a n d e a c h zi t o e ve r y o t h e r zj a s we ll a s t o t h e ve r t e x yi wit h t h e s a m e s u b s c r ip t i. Ca ll t h e r e s u lt in g g r a p h G. Ch o o s e W ½ V ( G) s u c h t h a t ¿ ( G) = jW j=! ( GnW ) . P u t m = jW \ V3j. Cle a r ly, W is a m in im a l s e t wh o s e r e m o va l fr o m G r e s u lt s in a g r a p h wit h ! ( GnW ) c o m p o n e n t s . A s W is a c u t s e t , we h a ve V1 ½ W a n d m ¸ 1 . Fr o m t h e m in im a lit y o f W we e a s ily c o n c lu d e t h a t V2 \ W = ; a n d m · b ¡ 1 . Th e n we h a ve jW j = m + a ¡ b + 1 a n d ! ( GnW ) = m + 1 . H e n c e , ¿ ( G ) = jW j ! ( GnW ) = m in 1·m·b¡1 m + a ¡ b + 1 m + 1 = a b : To s e e t h a t G is n o n -h a m ilt o n ia n , le t u s a s s u m e t h e c o n t r a r y, i.e . le t C b e a H a m ilt o n c yc le in G. D e n o t e b y F t h e s e t o f e d g e s o f C h a vin g a t le a s t o n e e n d ve r t e x in V2. S in c e V2 is in d e p e n d e n t , we h a ve jF j = 2 jV2j. On t h e o t h e r h a n d , t h e r e a r e a t m o s t 2 jV1j e d g e s in F h a vin g o n e e n d ve r t e x in V1 a n d a t m o s t jV3j e d g e s in F h a vin g o n e e n d ve r t e x in V3. Th u s , 2 b = 2 jV2j = jF j · 2 jV1j + jV3j = 2 ( a ¡ b + 1 ) + b = 2 a ¡ b + 2 : B u t t h is is e qu iva le n t t o a=b ¸ 3 =2 ¡ 1 =b, c o n t r a d ic t in g t h e h yp o t h e s is . Case 3.2: a b ¸ 3 2 ¡ 1 b . B y c h o o s in g a s u ± c ie n t ly la r g e q 2 N wit h a b = aq bq < 3 2 ¡ 1 bq ; 1 6 Non-hamiltonian Graphs with Given Toughness we c a n a r g u e a s in Ca s e 3 .1 . Case 4: a b = 3 2 . A n e xa m p le o f a n o n -h a m ilt o n ia n g r a p h wit h ¿ = 3 =2 is o b t a in e d wh e n in t h e P e t e r s e n g r a p h , e a c h ve r t e x is r e p la c e d b y a t r ia n g le . Case 5: 3 2 < a b < 7 4 . Claim 3: F or l ¸ 2 and m ¸ 1 , ¿ ³ G ³ L(2); x; y; l; m ´´ = l + 3 m 1 + 2 m : P r oof. L e t G = G ( L(2); x; y; l; m) fo r s o m e l ¸ 2 a n d m ¸ 1 . Ch o o s e S µ V ( G) s u c h t h a t ! ( GnS ) > 1 ; ¿ ( G ) = jSj ! ( GnS ) : Ob vio u s ly, V ( T ) µ S. D e ¯ n e Si = S \ V ( Li ) , si = jSij, a n d le t !i b e t h e n u m b e r o f c o m p o n e n t s o f LinSi t h a t c o n t a in n e it h e r xi n o r yi ( i = 1 ; :::; m ) . Th e n ¿ ( G ) = l + Pm i=1 si c + Pm i=1 !i ¸ l + Pm i=1 si 1 + Pm i=1 !i ; wh e r e c = ( 0 if xi; yi 2 S fo r a ll i 2 f 1 ; :::; mg 1 o t h r wis e . It is e a s y t o s e e t h a t !i · 2 ; si ¸ 3 2 !i ( i = 1 ; :::; m ) : Th e n ¿ ¸ l + 3 2 Pm i=1 !i 1 + Pm i=1 !i = l ¡ 3 2 1 + Pm i=1 !i + 3 2 ¸ l ¡ 3 2 1 + 2 m + 3 2 = l + 3 m 1 + 2 m : S e t U = V ( T ) [ U1 [ ::: [ Um, wh e r e Ui is t h e s e t o f ve r t ic e s o f Li wit h t h e d e g r e e a t le a s t 4 in Li ( i = 1 ; :::; m ) . Th e p r o o f o f Cla im 3 is c o m p le t e d b y o b s e r vin g t h a t ¿ ( G) · jUj ! ( GnU ) = l + 3 m 2 m + 1 : Case 5.1:b = 2 k + 1 for some integer k. Co n s id e r t h e g r a p h G( L(2); x; y; a ¡ 3 2 ( b ¡ 1 ) ; b¡1 2 ) . Case 5.1.1: a b · 7 4 ¡ 9 4b . B y t h e h yp o t h e s is , m = b ¡ 1 2 ¸ 2 µ a ¡ 3 2 ( b ¡ 1 ) ¶ + 1 = 2 l + 1 : B y Cla im 2 , G is n o t h a m ilt o n ia n . Cle a r ly b ¸ 3 , im p lyin g t h a t m = ( b ¡ 1 ) =2 ¸ 1 . If a b ¸ 3 2 + 1 2b t h e n l = a ¡ 3 2 ( b ¡ 1 ) ¸ 2 a n d b y Cla im 3 , ¿ ( G ) = a b . N o w le t a b < 3 2 + 1 2b . B y c h o o s in g a s u ± c ie n t ly la r g e in t e g e r q wit h a b = aq bq ¸ 3 2 + 1 2 bq ; Zh. Nikoghosyan 1 7 we c a n a r g u e a s in t h e p r e vio u s c a s e . Case 5.1.2: a b > 7 4 ¡ 9 4b . B y c h o o s in g a s u ± c ie n t ly la r g e in t e g e r q wit h a b = aq bq · 7 4 ¡ 9 4 bq ; we c a n a r g u e a s in Ca s e 5 .1 .1 . Case 5.2: b = 2 k for some integer k. Co n s id e r t h e g r a p h G0 o b t a in e d fr o m G( L(2); x; y; l; m ) b y r e p la c in g Lm wit h L (3). Claim 4: F or l ¸ 2 and m ¸ 1 , ¿ ( G0 ) = l + 3 m + 1 2 ( m + 1 ) : P r oof: Ch o o s e S µ V ( G0 ) s u c h t h a t ! ( G0nS ) > 1 a n d ¿ ( G0 ) = jSj=! ( G0nS ) . Ob vio u s ly, V ( T ) µ S. D e ¯ n e Si = S \ V ( Li ) , si = jSij, a n d le t !i b e t h e n u m b e r o f c o m p o n e n t s o f LinSi t h a t c o n t a in n e it h e r xi n o r yi ( i = 1 ; :::; m ) . S in c e si ¸ 32 !i ( i = 1 ; :::; m ¡ 1 ) a n d sm ¸ 43 !m, we h a ve ¿ ( G0 ) ¸ l + Pm i=1 si c + Pm i=1 !i ¸ l + 3 2 Pm¡1 i=1 !i + 4 3 !m 1 + Pm i=1 !i = l ¡ 1 6 !m 1 + Pm i=1 !i + 3 2 ; wh e r e c = 0 if xi; yi 2 S fo r a ll i 2 f 1 ; :::; mg a n d c = 1 , o t h e r wis e . Ob s e r vin g a ls o t h a t !i · 2 ( i = 1 ; :::; m ¡ 1 ) a n d !m · 3 , we o b t a in ( l ¡ 2 ) mX i=1 !i + 1 3 ( m + 1 ) !m · ( l ¡ 2 ) ( 2 m + 1 ) + ( m + 1 ) · 2 l ( m + 1 ) : B u t t h is is e qu iva le n t t o l ¡ 1 6 !m 1 + Pm i=1 !i + 3 2 ¸ l ¡ 2 2 ( m + 1 ) + 3 2 ; im p lyin g t h a t ¿ ( G0 ) ¸ l ¡ 2 2 ( m + 1 ) + 3 2 = l + 3 m + 1 2 ( m + 1 ) : S e t U = V ( T ) [ U1 [ ::: [ Um, wh e r e Ui is t h e s e t o f ve r t ic e s o f Li wit h t h e d e g r e e a t le a s t 4 in Li ( i = 1 ; :::; m ) . Th e p r o o f o f Cla im 4 is c o m p le t e d b y o b s e r vin g t h a t ¿ ( G0 ) · jUj ! ( GnU ) = l + 3 m + 1 2 ( m + 1 ) : Co n s id e r t h e g r a p h G0 wit h m = b 2 ¡ 1 a n d l = a ¡ 3 2 b + 2 . Cle a r ly m = b 2 ¡ 1 ¸ 1 a n d l = a ¡ 3 2 b + 2 ¸ 2 . B y Cla im 4 , ¿ ( G0 ) = a b . If a b · 7 4 ¡ 3 b t h e n m ¸ 2 l + 1 , a n d b y Cla im 2 , G0 is n o t h a m ilt o n ia n . Ot h e r wis e , b y c h o o s in g a s u ± c ie n t ly la r g e q wit h a b = aq bq · 7 4 ¡ 3 b ; we c a n a r g u e a s in t h e p r e vio u s c a s e . Case 6: 7 4 ¡ ² < a b · 2 . 1 8 Non-hamiltonian Graphs with Given Toughness L e t m = m1 + m2 ¸ 2 l + 1 a n d le t G00 b e t h e g r a p h o b t a in e d fr o m G ( L(1); x; y; l; m ) b y r e p la c in g Li wit h L (2) ( i = m1 + 1 ; m1 + 2 ; :::; m ) . B y Cla im 2 , G 00 is n o t h a m ilt o n ia n . Claim 5: F or l ¸ 2 , m ¸ 1 and m2 ¸ l ¡ 2 , ¿ ( G00 ) = l + 3 m2 2 m2 + 1 : P r oof: Ch o o s e S µ V ( G00 ) s u c h t h a t ¿ ( G00 ) = jSj=! ( G00nS ) . Ob vio u s ly, V ( T ) µ S. D e ¯ n e Si = S\V ( Li ) , si = jSij, a n d le t !i b e t h e n u m b e r o f c o m p o n e n t s o f LinSi t h a t c o n t a in n e it h e r xi n o r yi ( i = 1 ; :::; m ) . S in c e si ¸ 2 !i ( i = 1 ; :::; m1 ) a n d si ¸ 32 !i ( i = m1 + 1 ; :::; m) , we h a ve ¿ ( G00 ) ¸ l + Pm1 i=1 si + Pm i=m1+1 si c + Pm i=1 !i ¸ l + 2 Pm1 i=1 !i + 3 2 Pm i=m1+1 !i 1 + Pm i=1 !i l + 1 2 Pm1 i=1 !i ¡ 32 + 3 2 ( 1 + Pm i=1 !i ) 1 + Pm i=1 !i = 2 l + Pm1 i=1 !i ¡ 3 2 ( 1 + Pm i=1 !i ) + 3 2 ; wh e r e c = 0 if xi; yi 2 S fo r a ll i 2 f 1 ; :::; mg a n d c = 1 , o t h e r wis e . Ob s e r vin g t h a t !i · 2 ( i = 1 ; :::; m ) , we o b t a in ( 2 l ¡ 3 ) mX i=m1+1 !i ¡ ( 2 m2 ¡ 2 l + 4 ) m1X i=1 !i · 4 lm2 ¡ 6 m2: B u t t h is is e qu iva le n t t o 2 l + Pm1 i=1 !i ¡ 3 2 ( 1 + Pm i=1 !i ) + 3 2 ¸ 2 l ¡ 3 2 ( 2 m2 + 1 ) + 3 2 ; im p lyin g t h a t ¿ ( G00 ) ¸ 2 l ¡ 3 2 ( 2 m2 + 1 ) + 3 2 = l + 3 m2 2 m2 + 1 : S e t U = V ( T ) [ U1 [ ::: [ Um, wh e r e Ui is t h e s e t o f ve r t ic e s o f Li wit h t h e d e g r e e a t le a s t 4 in Li ( i = 1 ; :::; m ) . Th e p r o o f o f Cla im 5 is c o m p le t e d b y o b s e r vin g t h a t ¿ ( G00 ) · jUj ! ( GnU ) = l + 3 m2 2 m2 + 1 : Case 6.1: b = 2 k + 1 for some integer k. Co n s id e r t h e g r a p h G00 wit h m2 = b¡1 2 a n d l = a ¡ 3 2 ( b ¡ 1 ) . Case 6.1.1: a b ¸ 3 2 + 1 2b . S in c e a b · 2 , we h a ve m2 = b ¡ 1 2 ¸ a ¡ 3 2 ( b ¡ 1 ) ¡ 2 = l ¡ 2 : N e xt , s in c e a b ¸ 3 2 + 1 2b , we h a ve l = a ¡ 3 2 ( b ¡ 1 ) ¸ 2 . B y Cla im 5 , ¿ ( G00 ) = a b . Case 6.1.2: a b < 3 2 + 1 2b . B y c h o o s in g a s u ± c ie n t ly la r g e in t e g e r q wit h a b = aq bq ¸ 3 2 + 1 2 bq ; Zh. Nikoghosyan 1 9 we c a n a r g u e a s in Ca s e 6 .1 .1 . Case 6.2: b = 2 k for some integer k. Co n s id e r t h e g r a p h G000 o b t a in e d fr o m G00 b y r e p la c in g Lm wit h L (3). Claim 6: Fo r l ¸ 2 , m ¸ 1 a n d m2 ¸ l ¡ 2 , ¿ ( G000 ) = l + 3 m2 + 1 2 ( m2 + 1 ) : P r oof: Ch o o s e S µ V ( G000 ) s u c h t h a t ¿ ( G000 ) = jSj=! ( G000nS ) . Ob vio u s ly, V ( T ) µ S. D e ¯ n e Si = S\V ( Li ) , si = jSij, a n d le t !i b e t h e n u m b e r o f c o m p o n e n t s o f LinSi t h a t c o n t a in n e it h e r xi n o r yi ( i = 1 ; :::; m) . S in c e si ¸ 2 !i ( i = 1 ; :::; m1 ) , si ¸ 32 !i ( i = m1 + 1 ; :::; m ¡ 1 ) a n d sm ¸ 43 !m, we h a ve ¿ ( G000 ) ¸ l + Pm1 i=1 si + Pm¡1 i=m1+1 si + sm c + Pm i=1 !i ¸ l + 2 Pm1 i=1 !i + 3 2 Pm¡1 i=m1+1 !i + 4 3 !m 1 + Pm i=1 !i = l + 1 2 Pm1 i=1 !i ¡ 16 !m + ( 3 2 Pm1 i=1 !i + 3 2 Pm i=m1+1 ) 1 + Pm i=1 !i = l + 1 2 Pm1 i=1 !i ¡ 16 !m 1 + Pm i=1 !i + 3 2 ; wh e r e c = 0 if xi; yi 2 S fo r a ll i 2 f 1 ; :::; mg a n d c = 1 , o t h e r wis e . Ob s e r vin g t h a t !i · 2 ( i = 1 ; :::; m ¡ 1 ) a n d !m · 3 , we o b t a in ( l ¡ 2 ) mX i=m1+1 !i + 1 3 ( m2 + 1 ) !m ¡ ( m2 ¡ l + 3 ) m1X i=1 !i · l + 2 lm2 + 2 : B u t t h is is e qu iva le n t t o l + 1 2 Pm1 i=1 !i ¡ 16 !m 1 + Pm i=1 !i + 3 2 ¸ l ¡ 2 2 ( m2 + 1 ) + 3 2 ; im p lyin g t h a t ¿ ( G000 ) ¸ l ¡ 2 2 ( m2 + 1 ) + 3 2 = l + 3 m2 + 1 2 ( m2 + 1 ) : S e t U = V ( T ) [ U1 [ ::: [ Um, wh e r e Ui is t h e s e t o f ve r t ic e s o f Li wit h t h e d e g r e e a t le a s t 4 in Li ( i = 1 ; :::; m ) . Th e p r o o f o f Cla im 6 is c o m p le t e d b y o b s e r vin g t h a t ¿ ( G000 ) · jUj ! ( GnU ) = l + 3 m2 + 1 2 ( m2 + 1 ) : Co n s id e r t h e g r a p h G000 wit h m2 = b 2 ¡ 1 a n d l = a ¡ 3 2 b + 2 . Case 6.2.1: a b · 2 ¡ 1 b . B y t h e h yp o t h e s is , m2 = b 2 ¡ 1 ¸ ³ a ¡ 3 2 b + 2 ´ ¡ 2 = l ¡ 2 . N e xt , s in c e a b > 7 4 ¡ ² > 3 2 , we h a ve l = 3 2 b + 2 ¸ 2 . B y Cla im 6 , ¿ ( G000 ) = a b . 2 0 Non-hamiltonian Graphs with Given Toughness Case 6.2.2: a b > 2 ¡ 1 b . B y c h o o s in g a s u ± c ie n t ly la r g e in t e g e r q wit h a b = aq bq · 2 ¡ 1 bq , we c a n a r g u e a s in Ca s e 6 .2 .1 . Case 7: 2 < a b < 9 4 . Case 7.1: b = 2 k + 1 for some integer k. Case 7.1.1: a b · 9 4 ¡ 11 4b . Ta ke t h e g r a p h G ³ L(1); x; y; a ¡ 2 b + 2 ; b¡1 2 ´ . S in c e a b > 2 , we h a ve l = a ¡ 2 b + 2 ¸ 2 . N e xt , t h e h yp o t h e s is a b · 9 4 ¡ 11 4b is e qu iva le n t t o m = b ¡ 1 2 ¸ 2 ( a ¡ 2 b + 2 ) + 1 = 2 l + 1 : B y Cla im 1 , G ³ L(1); x; y; a ¡ 2 b + 2 ; b¡1 2 ´ is n o t h a m ilt o n ia n . Th e t o u g h n e s s ¿ ³ G ³ L(1); x; y; a ¡ 2 b + 2 ; b¡1 2 ´´ c a n b e d e t e r m in e d e xa c t ly a s in t h e p r o o f o f Th e o r e m A [2 ], ¿ à G à L(1); x; y; a ¡ 2 b + 2 ; b ¡ 1 2 !! ¸ l + 4 m 2 m + 1 = a b : Case 7.1.2: a b > 9 4 ¡ 11 4b . B y c h o o s in g a s u ± c ie n t ly la r g e in t e g e r q wit h aq bq = a b · 9 4 ¡ 1 1 4 bq ; we c a n a r g u e a s in Ca s e 7 .1 .1 . Case 7.2: b = 2 k for some positive integer k. Ta ke t h e g r a p h G0000 o b t a in e d fr o m G ³ L(1); x; y; a ¡ 2 b + 2 ; b 2 ´ b y r e p la c in g Lm wit h L (4). S in c e a b > 2 , we h a ve l = a ¡ 2 b + 2 > 2 . W e h a ve a ls o m = b 2 > 1 , s in c e b ¸ 3 . Claim 7: F or l ¸ 2 and m ¸ 1 , ¿ ( G0000 ) = l + 4 m ¡ 2 2 m : P r oof: Ch o o s e S µ V ( G000 ) s u c h t h a t ¿ ( G000 ) = jSj=! ( G000nS ) . Ob vio u s ly, V ( T ) µ S. D e ¯ n e Si = S \ V ( Li ) , si = jSij, a n d le t !i b e t h e n u m b e r o f c o m p o n e n t s o f LinSi t h a t c o n t a in n e it h e r xi n o r yi ( i = 1 ; :::; m) . S in c e si ¸ 2 !i ( i = 1 ; :::; m) , !i · 2 ( i = 1 ; :::; m ¡ 1 ) a n d !m · 1 , we h a ve ¿ ( G0000 ) = l + Pm i=1 si c + Pm i=1 !i ¸ l + 2 Pm i=1 !i 1 + Pm i=1 !i = l ¡ 2 1 + Pm i=1 !i + 2 ¸ l ¡ 2 2 m + 2 = l + 4 m ¡ 2 2 m ; wh e r e c = 0 if xi; yi 2 S fo r a ll i 2 f 1 ; :::; mg a n d c = 1 , o t h e r wis e . S e t U = V ( T ) [ U1 [ ::: [ Um, wh e r e Ui is t h e s e t o f ve r t ic e s o f Li wit h t h e d e g r e e a t le a s t 4 in Li ( i = 1 ; :::; m) . Th e p r o o f o f Cla im 7 is c o m p le t e d b y o b s e r vin g t h a t ¿ ( G0000 ) · jUj ! ( GnU ) = l + 4 m ¡ 2 2 m : Case 7.2.1: a b · 9 4 ¡ 3 b . Zh. Nikoghosyan 2 1 B y t h e h yp o t h e s is , m ¡ 1 = b 2 ¡ 1 ¸ 2 ( a ¡ 2 b + 2 ) + 1 = 2 l + 1 : B y Cla im 2 , G0000 is n o t h a m ilt o n ia n a n d b y Cla im 7 , ¿ ( G0000 ) = a b . Case 7.2.2: a b > 9 4 ¡ 3 b . B y c h o o s in g a s u ± c ie n t ly la r g e in t e g e r q wit h aq bq = a b · 9 4 ¡ 3 3 bq ; we c a n a r g u e a s in Ca s e 7 .2 .1 . Th e o r e m 1 is p r o ve d . Refer ences [1 ] D . B a u e r , H .J. B r o e r s m a , J. va n d e n H e u ve l a n d H .J. V e ld m a n , \ On h a m ilt o n ia n p r o p - e r t ie s o f 2 -t o u g h g r a p h s " , J . Graph Theory, vo l. 1 8 , p p . 5 3 9 -5 4 3 , 1 9 9 4 . [2 ] D . B a u e r , H .J. B r o e r s m a a n d H .J. V e ld m a n , \ N o t e ve r y 2 -t o u g h g r a p h is h a m ilt o n ia n " , D iscrete Appl. M ath., vo l. 9 9 , p p . 3 1 7 { 3 2 1 , 2 0 0 0 . [3 ] D . B a u e r a n d E . S c h m e ic h e l, \ To u g h n e s s , m in im u m d e g r e e a n d t h e e xis t e n c e o f 2 - fa c t o r s " , J . Graph Theory, vo l. 1 8 , p p . 2 4 1 -2 5 6 , 1 9 9 4 . [4 ] J. C. B e r m o n d , Selected Topics in Graph Theory, in : L . B e in e ke , R .J. W ils o n ( e d s ) , A c a d e m ic P r e s s , L o n d o n a n d N e w Y o r k, 1 9 7 8 . [5 ] J.A . B o n d y a n d U .S .R . Mu r t y, Graph Theory with Applications, Ma c m illa n , L o n d o n a n d E ls e vie r , N e w Y o r k, 1 9 7 6 . [6 ] V . Ch v¶a t a l, \ To u g h g r a p h s a n d h a m ilt o n ia n c ir c u it s " , D iscrete M ath., vo l. 5 , p p . 2 1 5 - 2 2 8 , 1 9 7 3 . [7 ] H . E n o m o t o , B . Ja c ks o n , P . K a t e r in is a n d A . S a it o , \ To u g h n e s s a n d t h e e xis t e n c e o f k-fa c t o r s " , J . Graph Theory, vo l. 9 , p p . 8 7 -9 5 , 1 9 8 5 . Submitted 05.09.2013, accepted 18.10.2013. îñí³Í ÏáßïáõÃÛ³Ùµ áã ѳÙÇÉïáÝÛ³Ý ·ñ³ýÝ»ñ Ä. ÜÇÏáÕáëÛ³Ý ²Ù÷á÷áõÙ ¶ñ³ýÇ ÏáßïáõÃÛ³Ý ¿ µÝáõó·ñÇãÁ Ý»ñÙáõÍ»É ¿ Êí³ï³ÉÁ 1973-ÇÝ: Àëï Êí³ï³ÉÇ í³ñϳÍÇ, ·áÛáõÃÛáõÝ áõÝÇ ³ÛÝåÇëÇ t0 í»ñç³íáñ ÃÇí, áñ Ï³Ù³Û³Ï³Ý t0-Ïáßï ·ñ³ý (ÇÝãÁ Ý߳ݳÏáõÙ ¿, áñ ¿ ¸ t0 ) ѳÙÇÉïáÝÛ³Ý ¿: ²Ûë Ù³ñï³Ññ³í»ñ³ÛÇÝ ËݹñÇ ÉáõÍÙ³Ý µáÉáñ ç³Ýù»ñÁ ¨ ï»ËÝÇÏ³Ý áõÕÕí³Í »Ý ³é³í»É³·áõÛÝ ÏáßïáõÃÛáõÝ áõÝ»óáÕ áã ѳÙÇÉïáÝÛ³Ý ·ñ³ýÝ»ñÇ Ï³éáõóÙ³ÝÁ, ³Ýï»ë»Éáí ³í»ÉÇ ó³Íñ ÏáßïáõÃÛ³Ý ·ñ³ýÝ»ñÁ: ²Ûë áõÕÕáõÃÛ³Ùµ ëï³óí³Í í»ñçÇÝ ³ñ¹ÛáõÝùÁ, áñÁ ëï³ó»É »Ý ´³áõ»ñÁ, ´ñá»ñëÙ³Ý ¨ ì»É¹Ù³ÝÁ, åݹáõÙ ¿, áñ Ï³Ù³Û³Ï³Ý ¹ñ³Ï³Ý " ÃíÇ Ñ³Ù³ñ ·áÛáõÃÛáõÝ áõÝÇ áã ѳÙÇÉïáÝÛ³Ý ·ñ³ý, áñÇ ÏáßïáõÃÛáõÝÁ ·ïÝíáõÙ ¿ 9 4 ¡" · ¿ < 9 4 ë³ÑÙ³ÝÝ»ñáõÙ: лï¨Û³É ³í»ÉÇ Áݹ·ñÏáõÝ ËݹÇñÁ Çñ ¹ñí³Íùáí ÑÇß»óÝáõÙ ¿ å³ÝóÇÏÉÇÏáõÃÛ³Ý ¨ ÑÇåáѳÙÇÉïáÝÛ³Ý ·ñ³ýÝ»ñÇ ·áÛáõÃÛ³Ý 2 2 Non-hamiltonian Graphs with Given Toughness ËݹÇñÝ»ñÁ. ·áÛáõÃÛáõÝ áõÝÇ, ³ñ¹Ûáù áã ѳÙÇÉïáÝÛ³Ý ·ñ³ý ïñí³Í ÏáßïáõÃÛ³Ùµ: Àëï Ù»ñ í³ñϳÍÇ, »Ã» ·áÛáõÃÛáõÝ áõÝÇ áã ѳÙÇÉïáÝÛ³Ý t-Ïáßï ·ñ³ý, ³å³ ( 0 ; t] ÇÝï»ñí³ÉÇÝ å³ïϳÝáÕ Ï³Ù³Û³Ï³Ý a é³óÇáÝ³É ÃíÇ Ñ³Ù³ñ ·áÛáõÃÛáõÝ áõÝÇ áã ѳÙÇÉïáÝÛ³Ý ·ñ³ý, áñÇ ÏáßïáõÃÛáõÝÁ áõÕÇÕ ¿: Ü»ñϳ ³ß˳ï³ÝùáõÙ ³Ûë í³ñϳÍÁ ³å³óáõóíáõÙ ¿ ( 0 ; 9 4 ) ÙÇç³Ï³ÛùÇÝ å³ïϳÝáÕ Ï³Ù³Û³Ï³Ý é³óÇáÝ³É ÃíÇ Ñ³Ù³ñ: ä³Ñ³Ýçí³Í ·ñ³ýÝ»ñÁ ϳéáõó»Éáõ ѳٳñ û·ï³·áñÍí»É »Ý ÙÇ ß³ñù Ýáñ ϳéáõóí³Íù³ÛÇÝ ÙdzíáñÝ»ñ, áñáÝù ï³ñµ»ñíáõÙ »Ý ·ñ³Ï³ÝáõÃÛ³Ý Ù»ç ѳÛïÝÇ ÙdzíáñÝ»ñÇó: Íåãàìèëüòîíîâûå ãðàôû ñ çàäàííîé æåñòêîñòüþ Æ. Íèêîãîñÿí Àííîòàöèÿ Ïîíÿòèå æåñòêîñòè ¿ ( G ) ãðàôà G áûëî ââåäåíî Õâàòàëîì â 1973 ãîäó. Ïî èçâåñòíîé ãèïîòåçå Õâàòàëà, ñóùåñòâóåò êîíå÷íîå ÷èñëî t0 òàêîå, ÷òî êàæäûé t0-æåñòêèé ãðàô (ýòî îçíà÷àåò, ÷òî ¿ ¸ t0) ãàìèëüòîíîâ. Äëÿ ðåøåíèÿ ýòîé ñòèìóëèðóþùåé ïðîáëåìû âñå óñèëèÿ êîíöåíòðèðîâàëèñü íà ïîñòðîåíèå íåãàìèëüòîíîâûõ ãðàôîâ ñ ìàêñèìàëüíîé æåñòêîñòüþ, íå óäåëÿÿ âíèìàíèÿ íà ãðàôû ñ íèçêîé æåñòêîñòüþ. Ïîñëåäíèé ðåçóëüòàò â ýòîì íàïðàâëåíèè, êîòîðûé ïîëó÷èëè Áàóåð, Áðîåðñìà è Âåëüäìàí, óòâåðæäàåò, ÷òî äëÿ êàæäîãî ïîëîæèòåëüíîãî ÷èñëà ", ñóùåñòâóåò íåãàìèëüòîíîâ ãðàô ñ æåñòêîñòüþ 9 4 ¡ " · ¿ < 9 4 . Ïîäîáíî çàäà÷àì ïàíöèêëè÷íîñòè è ñóùåñòâîâàíèÿ ãèïîãàìèëüòîíîâûõ ãðàôîâ, ìû ðàññìàòðèâàåì áîëåå åìêóþ çàäà÷ó: ñóùåñòâóåò ëè íåãàìèëüòîíîâ ãðàô ñ çàäàííîé æåñòêîñòüþ. Ïî íàøåé ãèïîòåçå, åñëè ñóùåñòâóåò íåãàìèëüòîíîâ t-æåñòêèé ãðàô, òî äëÿ ëþáîãî ðàöèîíàëüíîãî ÷èñëà a èç èíòåðâàëà ( 0 ; t], ñóùåñòâóåò íåãàìèëüòîíîâ ãðàô, æåñòêîñòü êîòîðîãî ðàâíà a.  äàííîé ðàáîòå ìû äîêàçûâàåì ýòó ãèïîòåçó äëÿ ëþáîãî ðàöèîíàëüíîãî ÷èñëà èç èíòåðâàëà ( 0 ; 9 4 ) . Äëÿ ïîñòðîåíèÿ òðåáóåìûõ ãðàôîâ áûëè èñïîëüçîâàíû íåêîòîðûå íîâûå äîïîëíèòåëüíûå êîíñòðóêòèâíûå áëîêè.