D:\sbornik\...\Article.DVI Mathematical Problems of Computer Science 37, 7{16, 2012. Upper and Lower B ounds of B iometr ic I denti¯cation E-Capacity Ma r ia m E . H a r o u t u n ia n , L ilit A . Te r -V a r d a n ya n a n d A r t h u r R . Mu r a d ya n Institute for Informatics and Automation Problems of NAS RA armar@ipia.sci.am, lilit@sci.am, mur¡art@yahoo.com Abstract In this paper we introduce a new concept of E-capacity for biometric indenti¯cation system, which is the generalization of the capacity studied by Willems et al [1]. We investigate this function by constructing upper and lower bounds. When E ! 0 we derive the lower and upper bounds of the channel capacity which coincides with the capacity obtained in [1]. Keywords: Biometric identi¯cation system, identi¯cation capacity, E-capacity bounds, error exponents. Refer ences [1 ] F. W ille m s , T. K a lke r , J. Go s e lin g , a n d J.-P . L in n a r t z , \ On t h e c a p a c it y o f a b io m e t r ic a l id e n t i¯ c a t io n s ys t e m " , International Symposium on Information Theory, Y o ko h a m a , Ja p a n , p . 8 2 , 2 0 0 3 . [2 ] S . P a n ka n t i, R . M. B o lle a n d A . Ja in , \ B io m e t r ic s -t h e fu t u r e o f id e n t ī c a t io n " , IE E E Computer, vo l. 3 3 , n o . 2 , p p . 4 6 4 9 , Fe b r u a r y, 2 0 0 2 . [3 ] T. Ig n a t e n ko a n d F. W ille m s , " B io m e t r ic s e c u r it y fr o m a n in fo r m a t io n -t h e o r e t ic a l p e r - s p e c t ive " , F oundations and Trends in Communications and Information Theory, vo l. 7 , n o 2 -3 , p p . 1 3 5 -3 1 6 , 2 0 1 2 . [4 ] E . A . H a r o u t u n ia n , \ On b o u n d s fo r E-c a p a c it y o f D MC" , IE E E Transactions on Infor- mation Theory, vo l. 5 3 , n o . 1 1 , p p . 4 2 1 0 -4 2 2 0 , 2 0 0 7 . [5 ] E . A . H a r o u t u n ia n , M. E . H a r o u t u n ia n a n d A . N . H a r u t yu n ya n , " R e lia b ilit y c r it e r ia in in fo r m a t io n t h e o r y a n d in s t a t is t ic a l h yp o t h e s is t e s t in g " , F oundations and Trends in Communications and Information Theory, vo l. 4 , n o 2 -3 , p p . 9 7 -2 6 3 , 2 0 0 8 . [6 ] M. E . H a r o u t u n ia n , \ E s t im a t e s o f E-c a p a c it y a n d c a p a c it y r e g io n s fo r m u lt ip le -a c c e s s c h a n n e l wit h r a n d o m p a r a m e t e r " , L ecture Notes in Computer Science, vo l. 4 1 2 3 , S p r in g e r V e r la g , p p . 1 9 6 -2 1 7 , 2 0 0 6 . [7 ] M. E . H a r o u t u n ia n , S . A . To n o ya n , \ R a n d o m c o d in g b o u n d o f in fo r m a t io n h id in g E- c a p a c it y" , P roc. of IE E E International Symposium on Information Theory, p . 5 3 6 , U S A , Ch ic a g o , 2 0 0 4 . [8 ] T. M. Co ve r a n d J. A . Th o m a s , E lements of Information Theory, W ile y, N e w Y o r k, 1 9 9 1 . 7 8 Upper and Lower Bounds of Biometric Identi¯cation E-Capacity [9 ] I. Cs is z ¶a r a n d J. K Äo r n e r , Information Theory: Coding Theorems for D iscrete M emory- less Systems, A c a d e m ic P r e s s , N e w Y o r k, 1 9 8 1 . [1 0 ] I. Cs is z ¶a r , \ Th e m e t h o d o f t yp e s " , IE E E Transactions on Information Theory, vo l. 4 4 , n o . 6 , p p . 2 5 0 5 -2 5 2 3 , 1 9 9 8 . λÝë³ã³÷³Ï³Ý ÝáõÛݳϳݳóÙ³Ý Ñ³Ù³Ï³ñ·Ç E-áõݳÏáõÃÛ³Ý í»ñÇÝ ¨ ëïáñÇÝ ·Ý³Ñ³ï³Ï³ÝÝ»ñÁ Ø. гñáõÃÛáõÝÛ³Ý, È. î»ñ-ì³ñ¹³ÝÛ³Ý ¨ ². Øáõñ³¹Û³Ý ²Ù÷á÷áõÙ Ðá¹í³ÍáõÙ Ý»ñÙáõÍíáõÙ ¿ Ï»Ýë³ã³÷³Ï³Ý ÝáõÛݳϳݳóÙ³Ý Ñ³Ù³Ï³ñ·Ç E- áõݳÏáõÃÛ³Ý Ýáñ ѳëϳóáõÃÛáõÝÁ, áñÝ ÁݹѳÝñ³óÝáõÙ ¿ ìÇÉ»ÙëÇ ¨ áõñÇßÝ»ñÇ [1] áõëáõÙݳëÇñ³Í áõݳÏáõÃÛ³Ý ·³Õ³÷³ñÁ: лﳽáïíáõÙ ¿ ³Û¹ ýáõÝÏódzݑ í»ñÇÝ ¨ ëïáñÇÝ ·Ý³Ñ³ï³Ï³ÝÝ»ñÇ Ï³éáõóÙ³Ý ÙÇçáóáí: ºñµ E ! 0 , Ù»Ýù ëï³ÝáõÙ »Ýù ϳåáõÕáõ áõݳÏáõÃÛ³Ý í»ñÇÝ ¨ ëïáñÇÝ ·Ý³Ñ³ï³Ï³ÝÝ»ñÁ, áñáÝù ѳÙÁÝÏÝáõÙ »Ý [1]- áõÙ ëï³óí³Í áõݳÏáõÃÛ³Ý Ñ»ï: Âåðõíÿÿ è íèæíÿÿ ãðàíèöû E-ïðîïóñêíîé ñïîñîáíîñòè áèîìåòðè÷åñêîé ñèñòåìû èäåíòèôèêàöèè Ì. Àðóòþíÿí, Ë. Òåð-Âàðäàíÿí è À. Ìóðàäÿí Àííîòàöèÿ  ñòàòüå ââîäèòñÿ íîâîå ïîíÿòèå Å-ïðîïóñêíîé ñïîñîáíîñòè äëÿ áèîìåò- ðè÷åñêîé ñèñòåìû èäåíòèôèêàöèè, êîòîðàÿ ÿâëÿåòñÿ îáîáùåíèåì ïðîïóñêíîé ñïîñîáíîñòè, èçó÷åííîé Âèëåìñîì è äð. â [1]. Ôóíêöèÿ èññëåäóåòñÿ ïóòåì ïîñòðîåíèÿ âåðõíåé è íèæíåé ãðàíèö. Êîãäà E ! 0 , ìû ïîëó÷àåì âåðõíþþ è íèæíþþ ãðàíèöû ïðîïóñêíîé ñïîñîáíîñòè êàíàëà, êîòîðûå ñîâïàäàþò ñ ïðîïóñêíîé ñïîñîáíîñòüþ, ïîëó÷åííîé â [1].