D:\sbornik\...\Article.DVI Mathematical Problems of Computer Science 37, 25{34, 2012. On T wo-stage Logar ithmically Asymptotically Optimal T esting of M ultiple H ypotheses Concer ning Distr ibutions fr om the P air of Families E vg u e n i H a r o u t u n ia n 1, P a r a n d z e m H a ko b ya n 1 a n d Fa r s h in H o r m o z i n e ja d 2 Institute for Informatics and Automation Problems of NAS of RA.1 Islamic Azad University, Ahvaz Branch, Iran.2 evhar@ipia.sci.am, par h@ipia.sci.am, hormozi-nejad@iauahvaz.ac.ir Abstract Two-stage testing of multiple hypotheses for a model with two given families of hypothetical probability distributions is considered. The matrix of reliabilities of log- arithmically asymptotically optimal hypotheses testing by a pair of stages is studied and compared with the case of similar one-stage testing. Keywords: Logarithmically asymptotically optimal (LAO) test, multiple hypothe- ses testing, multistage tests, reliabilities matrix, error probability exponent. Refer ences [1 ] R . A h ls we d e a n d E .A . H a r o u t u n ia n . \ On s t a t is t ic a l h yp o t h e s e s o p t im a l t e s t in g a n d id e n - t ī c a t io n " , L ecture Notes in Computer Science, vol. 4123, General Theory of Information Transfer and Combinatorics, S p r in g e r , p p . 4 6 2 -4 7 8 , 2 0 0 6 . [2 ] T.M Co ve r a n d J.A . To m a s . E lements of Information Theory, S e c o n d e d it io n , W ile y, N e wY o r k, 2 0 0 6 . [3 ] I. Cs is z ¶a r a n d J. K Äo r n e r . Information Theory: Coding Theorems for D iscrete M emoryless Systems, A c a d e m ic p r e s s , N e wY o r k, 1 9 8 1 . [4 ] I. Cs is z ¶a r a n d G. L o n g o . \ On t h e e r r o r e xp o n e n t fo r s o u r c e c o d in g a n d fo r t e s t in g s im p le s t a t is t ic a l h yp o t h e s e s " , Studia Sc. M ath. Hungarica, vo l. 6 , p p . 1 8 1 { 1 9 1 , 1 9 7 1 . [5 ] E .A . H a r o u t u n ia n . \ L o g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f m u lt ip le s t a t is t ic a l h yp o t h e s e s " , P roblems of Control and Information Theory, vo l 1 9 , n o . 5 -6 , p p . 4 1 3 -4 2 1 , 1 9 9 0 . [6 ] E .A . H a r o u t u n ia n .\ R e lia b ilit y in m u lt ip le h yp o t h e s e s t e s t in g a n d id e n t ī c a t io n " , P ro- ceedings of the NATO-ASI Conference, vol. 198 of NATO Science Series III: Computer and Systems Sciences, Y e r e va n , A r m e n ia , p p . 1 8 9 -2 0 1 , IOS P r e s s , 2 0 0 8 . [7 ] E .A . H a r o u t u n ia n , M.E . H a r o u t u n ia n a n d A .N . H a r o u t u n ia n . R e lia b ilit y c r it e r ia in in - fo r m a t io n t h e o r y a n d in s t a t is t ic a l h yp o t h e s is t e s t in g , F oundations and Trends in Com- munications and Information Theory, vo l. 4 , n o . 2 -3 , 2 0 0 8 . 2 5 2 6 On Two-stage Logarithmically Asymptotically Optimal Testing of Multiple Hypotheses [8 ] E .A . H a r o u t u n ia n a n d P .M. H a ko b ya n , \ Mu lt ip le h yp o t h e s e s L A O t e s t in g fo r m a n y in d e p e n d e n t o b je c t s " , International J ournal \Scholarly R esearch E xchange", p p . 1 { 6 , 2 0 0 9 . [9 ] W . H o e ®d in g . \ A s ym p t o t ic a lly o p t im a l t e s t s fo r m u lt in o m ia l d is t r ib u t io n s " , Annals of M athematical Statistics, vo l. 3 6 , p p . 3 6 9 -4 0 1 , 1 9 6 5 . [1 0 ] G. Tu s n a d y. \ On a s ym p t o t ic a lly o p t im a l t e s t s " , Annals of Statistics, vo l. 5 , n o . 2 , p p . 3 8 5 -3 9 3 , 1 9 7 7 . ºñÏáõ ÁÝï³ÝÇùÝ»ñ ϳ½ÙáÕ µ³ßËáõÙÝ»ñÇ í»ñ³µ»ñÛ³É µ³½Ù³ÏÇ í³ñϳÍÝ»ñÇ »ñÏ÷áõÉ Éá·³ñÇÃÙáñ»Ý ³ëÇÙåïáïáñ»Ý ûåïÇÙ³É ï»ëï³íáñáõÙ º. гñáõÃÛáõÝÛ³Ý, ö. гÏáµÛ³Ý ¨ ü. ÐáñÙá½Ç ݻų¹ ²Ù÷á÷áõÙ ¸Çï³ñÏí»É ¿ µ³ßËáõÙÝ»ñÇ »ñÏáõ ÁÝï³ÝÇùÝ»ñÇó ϳ½Ùí³Í Ùá¹»ÉÇ í»ñ³µ»ñÛ³É µ³½Ù³ÏÇ íÇ׳ϳ·ñ³Ï³Ý í³ñϳÍÝ»ñÇ ëïáõ·Ù³Ý ·áñÍÁÝóóÁ: лﳽáïí»É »Ý »ñÏáõ ÷áõÉ»ñÇó Ûáõñ³ù³ÝãÛáõñÇ ë˳ÉÝ»ñÇ ½áõÛ·»ñÇ óáõóÇãÝ»ñÇ (Ñáõë³ÉÇáõÃÛáõÝÝ»ñÇ) ÷áËϳåí³ÍáõÃÛáõÝÝ»ñÇ Ù³ïñÇóÝ»ñÁ: гٻٳïí»É »Ý »ñÏ÷áõÉ ï»ëïÇ ¨ Ùdz÷áõÉ ï»ëïÇ Ñáõë³ÉÇáõÃÛáõÝÝ»ñÁ ¨ ·áñÍÁÝóóÝ»ñÇ »ñϳñáõÃÛáõÝÝ»ñÁ: Î äâóõ-ýòàïíîì ëîãàðèôìè÷åñêè àñèìïòîòè÷åñêè îïòèìàëüíîì òåñòèðîâàíèè ìíîãèõ ãèïîòåç îòíîñèòåëüíî ðàñïðåäåëåíèé èç äâóõ ñåìåéñòâ Å. Àðóòþíÿí, Ï. Àêîïÿí è Ô. Õîðìîçè íåæàä Àííîòàöèÿ Ðàññìîòðåíî òåñòèðîâàíèå ìîäåëè ñîñòîÿøåé èç äâóõ ñåìåéñòâ âîçìîæíûõ ðàñïðåäåëåíèé âåðîÿòíîñòåé. Ìàòðèöà íàäåæíîñòåé ëîãîðèôìè÷åñêè àñèìïòî- òè÷åñêè îïòèìàëüíîãî òåñòèðîâàíèÿ â äâà ýòàïà èçó÷åíà è ñðàâíåíà ñî ñëó÷àåì àíàëîãè÷íîãî îäíîýòàïíîãî òåñòèðîâàíèÿ.