Microsoft Word - 13.doc Mathematical Problems of Computer Science 37, 102--107, 2012. 102 Necessary Conditions for Optimal Permissible Placement by the height of the Transitive Directed Tree with One Root (part second) Armen Khachaturyan Yerevan State University e-mail: khachaturyanarmen@gmail.com Abstract The present paper is the second part of the paper [1]. Here we have introduced a couple of additional concepts and have obtained some additional necessary conditions for the solution of the problem formulated in paper [1]. Keywords: transitive directed graph, optimal placement. References 1. A.H. Khachaturyan, “Necessary conditions for optimal permissible placement by the height of the transitive directed tree with one root”, Mathematical Problems of Computer Science, vol. 36, pp. 104-114, 2012. 2. A.H. Khachaturyan, “The optimal permissible placement by the height of the transitive oriented tree containing one vertex of branching”, Mathematical Problems of Computer Science, vol. 30, pp. 71-75, 2008. 3. M.R. Garey, D.S. Johnson, Computers and intractability: A guide to the theory of NP- completeness. San Francisco, CA: W.H. Freeman, 1979. 4. F. Gavril, “Some NP-complete problems on graphs,” Proc.11th Conf. on Information Sciences and Systems, Johns Hopkins University, Baltimore, MD, pp. 91-95, 1977. 5. M.R. Garey, R.L. Graham, D.S. Johnson and D.E. Knuth, “Complexity results for bandwidth minimization”, SIAM J. Appl. Math., vol. 34, pp. 477–495. 1978. 6. M.R. Garey, D.S. Johnson and L. Stockmeyer, “Some simplified NP-complete graph problems”, Theor. Comput. Sci., vol. 1, pp. 237–267. 1976. 7. Ch.H. Papadimitriou, “The NP-copleteness of the bandwidth minimization problem”, Computing, v. 16, pp. 263–270. 1976. 8. A.V. Petrosyan, S.E. Markosyan, Yu.G. Shukuryan, Mathematical Problems of Automation and Projection of Calculating-Machine. Yer., (in Russian). 1977. 9. G.G. Geoletsyan, “Flat placement of the vertices of tree with minimization of width”, DAN Arm. SSR, issue 56, no. 4, pp. 202–207 (in Russian). 1973. A. Khachaturyan 103 10. L. M. Goldberg and I. A. Klipker, “Minimum placement of trees on a line,” Technical Report, Physico-Technical Institute of Low Termeperatures, Academy of Sciences of Ukraina SSR, USSR. 1976. 11. Y. Shiloach, “A minimum linear arrangement algorithm for undirected trees” Report, Dept. Of Applied Mathematics, Weizmann Institute, Rehovot, Israel. 1976. 12. D. Adolphson and T.C. Hu, “Optimal linear ordering”, SIAM J. Appl. Math., vol. 25, no. 3, pp. 403–423. 1973. 13. C. Berge, The Theory of Graphs and Its Applications. New York: Wiley, 1962. Ø»Ï ³ñÙ³ïáí ïñ³Ý½ÇïÇí ûñÇ»Ýï³óí³Í ͳéÇ Áëï µ³ñÓñáõÃÛ³Ý ûåïÇÙ³É ÃáõÛɳïñ»ÉÇ ï»Õ³¹ñÙ³Ý ³ÝÑñ³Å»ßï å³ÛÙ³ÝÝ»ñ (Ù³ë »ñÏñáñ¹) ². ʳã³ïáõñÛ³Ý ²Ù÷á÷áõÙ êáõÛÝ Ñá¹í³ÍÁ ѳݹÇë³ÝáõÙ ¿ [1] Ñá¹í³ÍÇ ß³ñáõݳÏáõÃÛáõÝÁ: ²Ûëï»Õ Ù»Ýù Ý»ñÙáõÍ»É »Ýù áñáß Ýáñ ѳëϳóáõÃÛáõÝÝ»ñ ¨ ëï³ó»É [1] Ñá¹í³ÍáõÙ Ó¨³Ï»ñåí³Í ËݹñÇ ÉáõÍÙ³Ý Ñ³Ù³ñ ¨ë ÙÇ ù³ÝÇ ³ÝÑñ³Å»ßï å³ÛÙ³ÝÝ»ñ: Íåîáõîäèìûå óñëîâèÿ îïòèìàëüíîé äîïóñòèìîé ðàññòàíîâêè ïî âûñîòå òðàíçèòèâíî îðèåíòèðîâàííîãî äåðåâà ñ îäíèì êîðíåì (÷àñòü âòîðàÿ) À. Õà÷àòóðÿí Аннотация Íàñòîÿùàÿ ñòàòüÿ ÿâëÿåòñÿ ïðîäîëæåíèåì ñòàòüè [1]. Çäåñü ìû ïðèâåëè íåêîòîðûå íîâûå êîíöåïèè è ïîëó÷èëè åùå íåñêîëüêî íåîáõîäèìûõ óñëîâèé äëÿ ðåøåíèÿ çàäà÷è ñôîðìóëóðîâàííîé â ñòàòüå [1].