D:\sbornik\...\nas.DVI Mathematical Problems of Computer Science 36, 7{12, 2012. T he Degr ee of Unsolvability of the Completion Semantics for Gener al Logic P r ogr ams L e vo n A . H a yka z ya n Yerevan State University e-mail levon@rock.com Abstract The completion semantics considers interpretations that satisfy a special ¯rst-order theory was ¯rst introduced in [1]. These interpretations include but are not limited to Herbrand interpretations. Nevertheless, in logic programming the restriction to Herbrand interpretations is very desirable. As [2] remarks, however, this results in a non-recursively enumerable semantics. In this paper we show the ¦11-completeness of the completion semantics with restriction to Herbrand interpretations. Refer ences [1 ] K . L . Cla r k, \ N e g a t io n a s fa ilu r e " , In H. Gallaire, J . M inker, L ogic and D atabeses, p p 2 9 3 -3 2 3 , P le n u m , 1 9 7 8 . [2 ] J. C. S h e p h e r d s o n , \ N e g a t io n a s fa ilu r e , c o m p le t io n a n d s t r a t ī c a t io n " , In D . M . Gabbay, C. J . Hogger, J . A. R obinson, L ogic P rogramming, p p 3 5 5 -4 1 9 , Cla r e n d o n P r e s s , 1 9 9 8 . [3 ] J. W . L lo yd , R . W . To p o r , \ Ma kin g p r o lo g m o r e e xp r e s s ive " , J ournal of L ogic P ro- gramming, vo l. 1 , p p . 2 2 5 -2 4 0 , 1 9 8 4 . [4 ] J. W . L lo yd , F oundations of L ogic P rogramming, S p r in g e r -V e r la g , 1 9 9 4 . [5 ] H . R o g e r s , The Theory of R ecursive F unctions and E ®ective Computability, Mc Gr a w- H ill, 1 9 6 7 . ÀݹѳÝñ³óí³Í ïñ³Ù³µ³Ý³Ï³Ý Íñ³·ñ»ñÇ ÷³ÏÙ³Ý ë»Ù³ÝïÇϳÛÇ ³ÝÉáõÍ»ÉÇáõÃÛ³Ý ³ëïÇ׳ÝÁ È. гÛϳ½Û³Ý ²Ù÷á÷áõÙ ö³ÏÙ³Ý ë»Ù³ÝïÇÏ³Ý Ý»ñÙáõÍí»É ¿ [1] ³ß˳ïáõÃÛáõÝáõÙ, áõñ ¹Çï³ñÏíáõÙ »Ý ÇÝï»ñåñ»ï³ódzݻñ, áñáÝù µ³í³ñ³ñáõÙ »Ý ѳïáõÏ ³é³çÇÝ Ï³ñ·Ç ï»ëáõÃÛ³Ý: ²Ûë ÇÝï»ñåñ»ï³ódzݻñÁ Ý»ñ³éáõÙ »Ý, µ³Ûó ã»Ý ë³Ñٳݳ÷³Ïíáõ٠лñµñ³ÝÇ ÇÝï»ñåñ»ï³ódzݻñáí: ²ÛÝáõ³Ù»Ý³ÛÝÇí, ïñ³Ù³µ³Ý³Ï³Ý Íñ³·ñ³íáñÙ³Ý Ù»ç 7 8 The Degree of Unsolvability of the Completion Semantics for General Logic Programs лñµñ³ÝÇ ÇÝï»ñåñ»ï³ódzݻñáí ë³Ñٳݳ÷³ÏáõÙÁ ËÇëï ó³ÝϳÉÇ ¿: ê³Ï³ÛÝ ÇÝãå»ë ÝßíáõÙ ¿ [2] ³ß˳ïáõÃÛáõÝáõÙ, ¹³ µ»ñáõÙ ¿ áã é»ÏáõñëÇíáñ»Ý Ãí³ñÏ»ÉÇ ë»Ù³ÝïÇϳÛÇ: êáõÛÝ ³ß˳ïáõÃÛáõÝáõÙ óáõÛó ¿ ïñíáõÙ ÷³ÏÙ³Ý ë»Ù³ÝïÇϳÛÇ ¦ 11- ÉñÇíáõÃÛáõÝÁ лñµñ³ÝÇ ÇÝï»ñåñ»ï³ódzݻñáí ë³Ñٳݳ÷³ÏÙ³Ý ¹»åùáõÙ: Ñòåïåíü íåðàçðåøèìîñòè ñåìàíòèêè çàìûêàíèÿ îáîáùåííûõ ëîãè÷åñêèõ ïðîãðàìì Ë. Àéêàçÿí Àííîòàöèÿ Ñåìàíòèêà çàìûêàíèÿ áûëà ââåäåíà â ðàáîòå [1], â êîòîðîé ðàññìàòðèâàþòñÿ èíòåðïðåòàöèè, óäîâëåòâîðÿþùèå ñïåöèàëüíîé òåîðèè ïåðâîãî ïîðÿäêà. Ýòè èíòåðïðåòàöèè âêëþ÷àþò â ñåáÿ Ýðáðàíîâñêèå èíòåðïðåòàöèè, íî íå îãðàíè÷èâàþòñÿ èìè. Òåì íå ìåíåå â ëîãè÷åñêîì ïðîãðàììèðîâàíèè îãðàíè÷åíèå Ýðáðàíîâñêèìè èíòåðïðåòàöèÿìè âåñüìà æåëàòåëüíî. Îäíàêî, êàê îòìå÷åíî â ðàáîòå [2], ýòî ïðèâîäèò ê íå ðåêóðñèâíî ïåðå÷èñëèìîé ñåìàíòèêå.  äàííîé ðàáîòå ïîêàçûâàåòñÿ ¦ 11 -ïîëíîòà ñåìàíòèêè çàìûêàíèÿ ïðè îãðàíè÷åíèè Ýðáðàíîâñêèìè èíòåðïðåòàöèÿìè.