Microsoft Word - Title-template_sbornik36.doc Mathematical Problems of Computer Science 36, 41--50, 2012. 41 Digital Mammogram Segmentation and Abnormal Masses Detection System Armen Sahakyan Institute for Informatics and Automation Problems of NAS of RA e-mail: armensahakyan@gmail.com Abstract Digital Mammogram has emerged as the most popular screening technique for early detection of Breast Cancer and other abnormalities. Raw digital mammograms are medical images that are difficult to interpret so we need to develop Computer Aided Diagnosis (CAD) systems that will improve detection of abnormalities in mammogram images. Extraction of the breast region by delineation of the breast contour allows the search for abnormalities to be limited to the region of the breast. We need to perform essential pre-processing steps to suppress artifacts, enhance the breast region and then extract breast region by the process of segmentation. In this paper we present an automated system for detection of abnormal masses by anatomical segmentation of Breast Region of Interest (ROI). References [1] L.-M. Wun, R. M. Merrill, and E. J. Feuer, "Estimating Lifetime and Age-Conditional Probabilities of Developing Cancer," Lifetime Data Analysis, vol. 4, pp. 169-186, 1998. [2] "WHO Cancer Facts," http://www.who.int/cancer/en/, 2009. [3] L. Shen, R. Rangayyan, and J. Desaultels, “Detection and Classification Mammographic Calcifications”, International Journal of Pattern Recognition and Artificial Intelligence. Singapore: World Scientific, pp. 1403–1416, 1994. [4] F. Aghdasi, R.Ward, and B. Palcic, “Restoration of mammographic images in the presence of signal-dependent noise”, in State of the Art in Digital Mammographic Image Analysis. Singapore: World Scientific, vol. 7, pp. 42–63, 1994. [5] Y. Chitre, A. Dhawan, and M. Moskowtz, “Artificial neural network based classification of mammographic microcalcifications using image structure features”, in State of the Art of Digital Mammographic Image Analysis. Singapore: World Scientific, vol. 7, pp. 167–197, 1994. [6] Pisano and F. Shtern,“Image processing and computer-aided diagnosis in digital mammography,” in State of the Art of Digital Mammographic Image Analysis. Singapore: World Scientific, vol. 7, pp. 280–291, 1994. Digital Mammogram Segmentation and Abnormal Masses Detection System 42 [7] A. Sahakyan, H. Sarukhanyan, "Automatic Segmentation of the Breast Region in Digital Mammograms", Computer Science and Information Technologies, Proceedings of the Conference, pp. 386 - 389, Yerevan, Armenia, September 26-30, 2011. [8] Indra Kanta Maitra ; Sanjay Nag and Prof. Samir K. Bandyopadhyay, "Automated Digital Mammogram Segmentation For Detection Of Abnormal Masses Using Binary Homogeneity Enhancement Algorithm", Indian Journal of Computer Science and Engineering, Issue 3, vol. 2, pp. 416-427, 2011. [9] J. Suckling et al., “The Mammographic Image Analysis Society digital mammogram database”, Exerpta Medica., vol. 1069, pp. 375– 378, 1994. Âí³ÛÇÝ Ù³Ùá·ñ³ÙÝ»ñÇ ë»·Ù»Ýï³íáñÙ³Ý ¨ ³ÝÝáñÙ³É ½³Ý·í³ÍÝ»ñÇ Ñ³Ûï³µ»ñÙ³Ý Ñ³Ù³Ï³ñ· ². ê³Ñ³ÏÛ³Ý ²Ù÷á÷áõÙ ÎñÍù³·»ÕÓÇ ù³ÕóÏ»ÕÇ ¨ ³ÛÉ ³ÝÝáñÙ³É ½³Ý·í³ÍÝ»ñÇ í³Õ ѳÛïݳµ»ñÙ³Ý Ù»Ãá¹Ý»ñÇó ¿ Ãí³ÛÇÝ Ù³Ùá·ñ³ýdzÝ։ Âí³ÛÇÝ Ù³Ùá·ñ³ÙÝ»ñÁ µÅßÏ³Ï³Ý å³ïÏ»ñÝ»ñ »Ý, áñáÝó í»ñ³Ùß³ÏÙ³Ý ¨ í»ñÉáõÍáõÃÛ³Ý Ñ³Ù³ñ ³ÝÑñ³Å»ßï ¿ Ùß³Ï»É Ñ³Ù³Ï³ñ·ã³ÛÇÝ ³ËïáñáßÙ³Ý ¹Ç³·ÝáëïÇÏ (CAD) ѳٳϳñ·, áñÁ Ïû·ÝÇ ³ÝÝáñÙ³É ½³Ý·í³ÍÝ»ñÇ Ñ³Ûïݳµ»ñÙ³ÝÁ։ ÎñÍùÇ »½ñ³·Í»ñÇ ßñç³·ÍÙ³Ý û·ÝáõÃÛ³Ùµ, ÏñÍù³ÛÇÝ ßñç³ÝÇ ³é³ÝÓݳóáõÙÁ ÃáõÛÉ ¿ ï³ÉÇë, áñ ³ÝÝáñÙ³É ½³Ý·í³ÍÝ»ñÇ áñáÝáõÙÁ ë³Ñٳݳ÷³ÏíÇ ÙdzÛÝ ÏñÍùÇ ßñç³·Íáí։ ²ÝÑñ³Å»ßï ¿ Çñ³Ï³Ý³óÝ»É ³ÕÙáõÏÝ»ñÇ Ñ»é³óÙ³Ý Ý³Ë³Ùß³ÏÙ³Ý ù³ÛÉ»ñ, µ³ñ»É³í»É ÏñÍù³·»ÕÓÇ å³ïÏ»ñÁ ¨ ³ÛÝáõÑ»ï¨ ë»·Ù»Ýï³íáñ»É։ ²Ûë Ñá¹í³ÍáõÙ Ý»ñϳ۳óí³Í ¿ ³ÝÝáñÙ³É ½³Ý·í³ÍÝ»ñÇ Ñ³Ûïݳµ»ñÙ³Ý Íñ³·ñ³ÛÇÝ Ñ³Ù³Ï³ñ·, áñÁ Çñ³Ï³Ý³óÝáõÙ ¿ å³ïÏ»ñÇ Ñ»ï³ùñùÇñ ïÇñáõÛÃÝ»ñÇ (ROI) ë»·Ù»Ýï³íáñáõÙÁ։ Ñèñòåìà öèôðîâîé ñåãìåíòàöèè ìàììîãðàì è îáíàðóæåíèÿ àíîìàëüíûõ ìàññ À. Ñààêÿí Àííîòàöèÿ Öèôðîâàÿ ìàììîãðàôèÿ ÿâëÿåòñÿ ñàìîé ïîïóëÿðíîé òåõíèêîé ñêðèíèíãà äëÿ ðàííåãî âûÿâëåíèÿ ðàêà ìîëî÷íîé æåëåçû è äðóãèõ íàðóøåíèé. Öèôðîâûå ìàììîãðàìû ÿâëÿþòñÿ ìåäèöèíñêèìè èçîáðàæåíèÿìè è äëÿ èõ îáðàáîòêè íûæíî ðàçàðàáîòàòü âñïîìîãàòåëüíûå äèàãíîñòè÷åñêèå êîìïüþòåðíûå (CAD) ñèñòåìû, êîòîðûå áóäóò ñïîñîáñòâîâàòü âûÿâëåíèþ íàðóøåíèé. Îòìå÷åíèå îáëàñòè ãðóäè êîíòóðîì ïîçâîëÿåò ïîèñêû àíîìàëèè áûòü îðãàíèÿåííûì òîëüêî îáëàñòüþ ãðóäè. Ìû äîëæíû âûïîëíèòü øàãè ïðåâàðèòåëüíîé îáðàáîòêè, ÷òîáû ïîäàâèòü øóìû, óëóòøèòü èçîáðàæåíèå îáëàñòè ãðóäè è çàòåì îòìåòèòü îáëàñòü ãðóäè ïðîöåññîì ñåôìåíòàöèè.  ýòîé ñòàòüå ìû ïðåäñòàâëÿåì àâòîìàòèçèðîâàííóþ ñèñòåìû äëÿ îáíàðóæåíèÿ àíîìàëüíûõ ìàññ àíàòîìè÷åñêîé ñåôìåíòàöèåé îáëàñòè èíòåðåñà (ROI) ãðóäè.