D:\sbornik\...\tpel.DVI Mathematical Problems of Computer Science 36, 140{145, 2012. N umer ical Solution of 1D Schr Äodinger E quation at Adiabatically Changing P otential A s h o t S . Ge vo r kya n 1;2 a n d Mis a k G. N a lb a n d ya n 1 1Institute for Informatics and Automation Problems, NAS of Armenia 2Joint Institute of Nuclear Research, 141980 Dubna, Moscow reg., Russia e-mail g ashot@sci.am, habajyan@ipia.sci.am Abstract We study the eigenfunction and eigenvalue problem of 1D SchrÄodinger equation with adiabatically changing along the reaction coordinate (external parameter) Mors potential. As an example the 2D interaction potential of the collinear reactive collision H ¡ H ¡ H is calculated which later is ¯tted by the generalized 2D Mors potential. It is shown that the vibration state of body system are characterized by the set of ¯ve orthonormalized wavefunctions and corresponding energies which are slowly changed along the curve of the reaction coordinate. The mentioned problem is solved also with taking into account rotation motion of bodies system. It is shown that the solution of previous problem in this case is insigni¯cantly modi¯ed. Keywords: Bodies system, eigenfunction and eigenvalue problem of SchrÄodinger equation, ¯tting, Mors potential. Refer ences [1 ] A . S . Ge vo r kya n , G. G. B a lin t -K u r t i a n d G. N ym a n : N o ve l a lg o r it h m fo r s im u la t io n o f 3 D qu a n t u m r e a c t ive a t o m -d ia t o m s c a t t e r in g . P r o c e d ia CS 1 ( 1 ) , p p . 1 1 9 5 -1 2 0 , 2 0 1 0 . 1 0 .1 0 1 6 / j.p r o c s .2 0 1 0 .0 4 .1 3 3 [2 ] S . Flg g e , P ractical quantum mechanics I,. B e r lin , S p r in g e r , 1 9 7 4 . ²¹Ç³µ³ïÇÏ ÷á÷áËíáÕ åáï»ÝódzÉáí 1 D Þñ»¹ÇÝ·»ñÇ Ñ³í³ë³ñÙ³Ý Ãí³ÛÇÝ ÉáõÍáõÙ ². ¶¨áñ·Û³Ý ¨ Ø. ܳɵ³Ý¹Û³Ý ²Ù÷á÷áõÙ ²ß˳ï³ÝùáõÙ áõëáõÙݳëÇñí³Í ¿ ³ñï³ùÇÝ ¹³ßïÇ ³éϳÛáõÃÛ³Ùµ ï³ñµ»ñ »ñϳñáõÃÛ³Ùµ 1 D ãϳñ·³íáñí³Í ï³ñ³Í³Ï³Ý ëåÇݳÛÇÝ ßÕóݻñÇ (îêÞ) ѳÙáõÛÃÇ íÇ׳ϳ·ñ³Ï³Ý ѳïÏáõÃÛáõÝÝ»ñÁ‘ ѳßíÇ ³éÝ»Éáí é»É³ùë³óÇáÝ »ñ¨áõÛÃÝ»ñÁ: ²é³çÇÝ ³Ý·³Ù û·ï³·áñÍí»É ¿ ÏáÙåÉ»ùë-¹³ë³Ï³Ý гÙÇÉïáÝdzÝÁ: ä³ñµ»ñ³Ï³Ý 1 D ó³ÝóÇ Ñ³Ý·áõÛóÝ»ñáõÙ ëï³óí»É »Ý é»Ïáõñ»Ýï »é³ÝÏÛáõݳã³÷³Ï³Ý ѳí³ë³ñáõÙÝ»ñ, áñáÝù 1 4 0 A. Gevorkyan and M. Nalbandyan 1 4 1 êÇÉí»ëïñÇ å³ÛÙ³ÝÝ»ñÇ Ñ»ï ÙdzëÇÝ ³Ý³ÉÇïÇÏáñ»Ý ß³ñáõݳÏíáõÙ »Ý ÏáÙåÉ»ùë ï³ñ³ÍáõÃÛ³Ý Ù»ç ¨ Ñݳñ³íáñáõÃÛáõÝ »Ý ï³ÉÇë ѳݷáõÛó ³é ѳݷáõÛó ѳßí»É ëåÇÝÇ áõÕÕáñ¹í³ÍáõÃÛáõÝÁ‘ ѳßíÇ ³éÝ»Éáí ëåÇݳÛÇÝ ßÕóݻñáõÙ é»É³ùë³óÇáÝ »ñ¨áõÛÃÝ»ñÁ: àõëáõÙݳëÇñí³Í »Ý ݳ¨ ëåÇݳÛÇÝ Ñ³ÙáõÛÃáõÙ ï»ÕÇ áõÝ»óáÕ áñáß³ÏÇ ÏñÇïÇÏ³Ï³Ý »ñ¨áõÛÃÝ»ñ, ÇÝãåÇëÇù »Ý Îɳáõ½Çáõë-ØáëëáïÇÇ (Î-Ø) ѳí³ë³ñÙ³Ý Ù»ç ³Õ»ïÝ»ñÁ‘ ϳËí³Í ³ñï³ùÇÝ ¹³ßïÇ Ù»ÍáõÃÛáõÝÇó: ²é³ç³ñÏí³Í ¿ íÇ׳ϳ·ñ³Ï³Ý ·áõÙ³ñÇ Ýáñ Ý»ñϳ۳óáõÙ í»ñç³íáñ Ãíáí ÇÝï»·ñ³É³ÛÇÝ ³ñï³Ñ³ÛïáõÃÛ³Ý ï»ëùáí‘ ¿Ý»ñ·Ç³ÛÇ ¨ µ¨»é³óí³ÍáõÃÛ³Ý ï³- ñ³ÍáõÃÛáõÝáõÙ: ×èñëåííîå ðåøåíèå 1 D óðàâíåíèÿ Øðåäèíãåðà ñ àäèàáàòè÷åñêè èçìåíÿþùèìñÿ ïîòåíöèàëîì À. Ãåâîðêÿí è Ì. Íàëáàíäÿí Àííîòàöèÿ Ìû èññëåäóåì ïðîáëåìó ñîáñòâåííûõ ôóíêöèé è ñîáñòâåííûõ çíà÷åíèé äëÿ 1 D óðàâíåíèÿ Øðåäèíãåðà ñ àäèàáàòè÷åñêè èçìåíÿþùèìñÿ âäîëü êîîðäèíàòû ðåàêöèè (âíåøíûé ïàðàìåòåð) ïîòåíöèàëîì Ìîðñà.  êà÷åñòâå ïðèìåðà âû÷èñëåí 2 D ïîòåíöèàë âçàèìîäåéñòâèÿ êîëëèíåàðíîãî ðåàêòèâíîãî ñòîëêíîâåíèÿ H ¡ H ¡ H, êîòîðûé äàëåå àïïðîêñèìèðîâàí îáîáùåííûì 2 D ïîòåíöèàëîì Ìîðñà. Ïîêàçàíî, ÷òî êîëåáàòåëüíîå ñîñòîÿíèå ñèñòåìû òåë õàðàêòåðèçóåòñÿ ìíîæåñòâîì èç ïÿòè îðòîíîðìèðîâàííûõ âîëíîâûõ ôóíêöèé è ñîîòâåòñòâóþùèõ ýíåðãèé, êîòîðûå ìåäëåííî ìåíÿþòñÿ âäîëü êðèâîé êîîðäèíàòû ðåàêöèè. Óêàçàííàÿ ïðîáëåìà ðåøàåòñÿ òàê æå ñ ó÷åòîì âðàùàòåëüíîãî äâèæåíèÿ ñèñòåìû òåë. Ïîêàçàíî, ÷òî â ýòîì ñëó÷àå ðåøåíèå ïðåäûäóùåé ïðîáëåìû íåçíà÷èòåëüíî ìîäèôèöèðóåòñÿ.