D:\sbornik\...\Tpel.DVI Mathematical Problems of Computer Science 35, 33{36, 2011. E r r or P r obability E xponents and Achievable Region in T esting of M any H ypotheses for T wo I ndependent Objects A r a m O. Y e s s a ya n , E vg u e n i A . H a r o u t u n ia n a n d P a r a n d z e m M. H a ko b ya n Institute for Informatics and Automation Problems of NAS of RA e-mail: evhar@ipia.sci.am Abstract The model of many hypotheses testing for one objects was examined by E. Tuncel. In the present work it is supposed that L hypothetical probability distributions are known and two objects independently each from other follow to one of them. N -vectors of values of discrete independent random variables represent results of N observations for each object. Decisions concerning realized probability distributions of the objects must be made on the base of such samples. It is proved that de¯ned region for vector of error probability exponents \reliabilities for two objects completly characterizes set of all achivable vectors. Refer ences [1 ] I. Cs is z ¶a r a n d P . C. S h ie ld s , Information Theory and Statistics: a tutorial. F oundations and Trends in Communications and Information Theory, vo lu m e 1 , n o . 4 , 2 0 0 4 . [2 ] T. M. Co ve r a n d J. A . Th o m a s , E lements of Information Theory, Second E dition, W ile y, N e w Y o r k, 2 0 0 6 . [3 ] R . E . B e c h h o fe r , J. K ie fe r a n d M. S o b e l, Sequential Identi¯cation and R anking P roce- dures. Th e U n ive r s it y o f Ch ic a g o , P r e s s , 1 9 6 8 . [4 ] R . E . B la h u t , \ H yp o t h e s e s t e s t in g a n d in fo r m t io n t h e o r y," IE E E Transaction on Infor- mation Theory, vo l 2 0 , p p . 4 0 5 -4 1 7 , 1 9 7 4 . [5 ] R . E . B la h u t , P rinciples and P ractice of Information Theory. R e a d in g , MA : A d d is o n - W e s le y, 1 9 8 7 . [6 ] E .Tu n c e l, \ On e r r o r e xp o n e n t s in h yp o t h e s is t e s t in g " , IE E E Trans. Inf. Theory, vo l. 5 1 , n o . 8 , p p . 2 9 4 5 -2 9 5 0 , 2 0 0 5 . [7 ] E . H a r o u t u n ia n , \ L o g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f m u lt ip le s t a t is t ic a l h yp o t h e s e s " , P roblems of Control and Information Theory, vo l. 1 9 ( 5 -6 ) , p p . 4 1 3 { 4 2 1 , 1 9 9 0 . [8 ] R . F. A h ls we d e a n d E . A . H a r o u t u n ia n , \ On lo g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f h yp o t h e s e s a n d id e n t i¯ c a t io n " . L ecture Notes in Computer Science, vol. 4123, \General Theory of Information Transfer and Combinatorics", Springer, p p . 4 6 2 { 4 7 8 , 2 0 0 6 . 3 3 3 4 Error Probability Exponents and Achievable Region in Testing of Many Hypotheses for Two Independent Objects [9 ] E . H a r o u t u n ia n , \ R e lia b ilit y in m u lt ip le h yp o t h e s e s t e s t in g a n d id e n t i¯ c a t io n " , P roceed- ings of NATO ASI, Yerevan, 2003, NATO Science Series III: Computer and System Sciences, vo l. 1 9 8 , p p . 1 8 9 -2 0 1 , IOS P r e s s , 2 0 0 5 . [1 0 ] E . H a r o u t u n ia n a n d P . H a ko b ya n , \ Mu lt ip le h yp o t h e s e s L A O t e s t in g fo r m a n y in d e - p e n d e n t o b je c t s " , International J ournal Scholarly R esearch E xchange, vo l. 2 0 0 9 , p p . 1 -6 , 2 0 0 9 . [1 1 ] E . H a r o u t u n ia n a n d A . Y e s s a ya n , \ On o p t im a l t e s t in g o f t h r e e h yp o t h e s e s fo r t wo d e p e n d e n t o b je c t s " , M athematical P roblems of Computer Sciences, vo l. X X V I, p p . 8 9 -9 4 , 2 0 0 6 . ºñÏáõ ³ÝÏ³Ë ûµÛ»ÏïÝ»ñÇ í»ñ³µ»ñÛ³É µ³½Ù³ÃÇí í³ñϳÍÝ»ñÇ ï»ëï³íáñÙ³Ý ë˳ÉÝ»ñÇ Ñ³í³Ý³Ï³ÝáõÃÛáõÝÝ»ñÇ óáõóÇãÝ»ñÁ ². ºë³Û³Ý, º. гñáõÃÛáõÝÛ³Ý ¨ ö. гÏáµÛ³Ý ²Ù÷á÷áõÙ Ðá¹í³ÍáõÙ »Ýó¹ñíáõÙ ¿, áñ L ѳí³Ý³Ï³Ý³ÛÇÝ µ³ßËáõÙÝ»ñÁ ѳÛïÝÇ »Ý, ÇëÏ ûµÛ»ÏïÝ»ñÇó Ûáõñ³ù³ÝãÛáõñÁ ³ÝÏ³Ë Ù»ÏÁ ÙÛáõëÇó ϳñáÕ »Ý µ³ßËí³Í ÉÇÝ»É ïñí³ÍÝ»ñÇó Ûáõñ³ù³ÝãÛáõñáí: úµÛ»ÏïÝ»ñÇ µ³ßËí³ÍáõÃÛ³Ý í»ñ³µ»ñÛ³É áñáßáõÙÝ»ñÝ ÁݹáõÝíáõÙ »Ý »ñÏáõ ûµÛ»ÏïÝ»ñÇ N -³Ï³Ý ³ÝÏ³Ë ¹Çï³ñÏáõÙÝ»ñÇ ³ñ¹ÛáõÝùÝ»ñÇ ÑÇÙ³Ý íñ³: Ðá¹í³ÍáõÙ ³å³óáõóí»É ¿, áñ ³ÝÏ³Ë ûµÛ»ÏïÝ»ñÇ Ñáõë³ÉÇáõÃÛáõÝÝ»ñÇ (ë˳ÉÝ»ñÇ Ñ³í³Ý³Ï³ÝáõÃÛáõÝÝ»ñÇ óáõóÇãÝ»ñÇ) í»ÏïáñÝ ³ÙµáÕçáõÃÛ³Ùµ µÝáõó·ñáõÙ ¿ ѳë³Ý»ÉÇ ÏáãíáÕ í»ÏïáñÝ»ñÇ µ³½ÙáõÃÛáõÝÁ: