D:\TeX_522\main.DVI Mathematical Problems of Computer Science 52, 14{20, 2019. U D C 5 1 9 .1 Relative Lengths of P aths and Cycles in 2-Connected Gr aphs Zh o r a G. N iko g h o s ya n Institute for Informatics and Automation Problems of NAS RA e-mail: zhora@ipia.sci.am Abstract Let l be the length of a longest path in a 2-connected graph G and c the circum- ference - the length of a longest cycle in G. In 1952, Dirac proved that c > p 2l, by noting that "actually c ¸ 2 p l, but the proof of this result, which is best possible, is rather complicated". Let L1; L2; :::; Lm be a vine on a longest path of G. In this paper, using the parameter m, we present a more general sharp bound for the circum- ference c including the bound c ¸ 2 p l as an immediate corollary, based on elementary arguments. Keywords: Longest cycle, Longest path, Circumference, Vine. 1 . In t r o d u c t io n W e c o n s id e r o n ly u n d ir e c t e d g r a p h s wit h n o lo o p s o r m u lt ip le e d g e s . L e t G b e a 2 -c o n n e c t e d g r a p h . W e u s e c a n d l t o d e n o t e t h e c ir c u m fe r e n c e ( t h e le n g t h o f a lo n g e s t c yc le ) a n d t h e le n g t h ( t h e n u m b e r o f e d g e s ) o f a lo n g e s t p a t h o f G. A g o o d r e fe r e n c e fo r a n y u n d e ¯ n e d t e r m s is [1 ]. In 1 9 5 2 , D ir a c [2 ] p r o ve d t h e fo llo win g . T heor em A: [2 ]. In every 2-connected graph, c > p 2 l. In t h e s a m e p a p e r [2 ], D ir a c c o n s id e r e d a s h a r p ve r s io n o f Th e o r e m A b y n o t in g t h a t " a c t u a lly c ¸ 2 p l, b u t t h e p r o o f o f t h is r e s u lt , wh ic h is b e s t p o s s ib le , is r a t h e r c o m p lic a t e d " . A n a lo g o u s qu e s t io n s we r e s t u d ie d fo r k-c o n n e c t e d g r a p h s wh e n k ¸ 3 b y B o n d y a n d L o c ke ( [4 ],[5 ]) . In t h is p a p e r , u s in g a n e w p a r a m e t e r , we p r e s e n t a m o r e g e n e r a l s h a r p b o u n d fo r t h e c ir c u m fe r e n c e c in 2 -c o n n e c t e d g r a p h s in t e r m s o f l a n d t h e le n g t h o f a vin e o n a lo n g e s t p a t h o f G, in c lu d in g t h e b o u n d c ¸ 2 p l a s a c o r o lla r y, b a s e d o n e le m e n t a r y a r g u m e n t s . In o r d e r t o fo r m u la t e t h is r e s u lt , we n e e d s o m e a d d it io n a l d e ¯ n it io n s a n d n o t a t io n s . Th e s e t o f ve r t ic e s o f a g r a p h G is d e n o t e d b y V ( G) a n d t h e s e t o f e d g e s b y E ( G) . If Q is a p a t h o r a c yc le , t h e n t h e le n g t h o f Q, d e n o t e d b y l ( Q ) , is jE ( Q ) j - t h e n u m b e r o f e d g e s in Q. W e wr it e a c yc le Q wit h a g ive n o r ie n t a t io n b y ¡! Q . Fo r x; y 2 V ( Q ) , we d e n o t e b y 1 4 Zh. Nikoghosyan 1 5 x ¡! Q y t h e s u b p a t h o f Q in t h e c h o s e n d ir e c t io n fr o m x t o y. W e u s e P = x ¡! P y t o d e n o t e a p a t h wit h e n d ve r t ic e s x a n d y in t h e d ir e c t io n fr o m x t o y. W e s a y t h a t ve r t e x z1 p r e c e d e s ve r t e x z2 o n ¡! Q if z1, z2 o c c u r o n ¡! Q in t h is o r d e r , a n d in d ic a t e t h is r e la t io n s h ip b y z1 Á z2. W e will wr it e z1 ¹ z2 wh e n e it h e r z1 = z2 o r z1 Á z2. L e t P = x ¡! P y b e a p a t h . A vin e o f le n g t h m o n P is a s e t fLi = xi ¡! L iyi : 1 · i · mg o f in t e r n a lly-d is jo in t p a t h s s u c h t h a t ( a ) V ( Li ) \ V ( P ) = fxi; yig ( i = 1 ; :::; m) , ( b ) x = x1 Á x2 Á y1 ¹ x3 Á y2 ¹ x4 Á ::: ¹ xm Á ym¡1 Á ym = y o n P . Th e m a in r e s u lt is t h e fo llo win g . T heor em 1: L et G be a 2-connected graph. If fL1; L2; :::; Lmg is a vine on a longest path of G, then c ¸ 8 >>< >>: 2l m+1 + m+1 2 ; when m is odd; 2l¡ 1 2 m+1 + m+1 2 ; when m is even: E quivalently, Theorem 1 can be formulated as follows, implying D irac's conjecture as an im- mediate corollary. T heor em 2: L et G be a 2-connected graph. If fL1; L2; :::; Lmg is a vine on a longest path of G, then c ¸ 8 >>< >>: q 4 l + ( c ¡ m ¡ 1 ) 2; when m is odd; q 4 l + ( c ¡ m ¡ 1 ) 2 ¡ 1 ; when m is even: Cor ollar y 1: In every 2-connected graph, c ¸ 2 p l. Note that if m is odd, then c > 2 p l. The following lemma guarantees the existence of at least one vine on a longest path in a 2-connected graph. T he Vine Lemma: [3 ]. L et G be a k-connected graph and P a path in G. Then there are k ¡ 1 pairwise-disjoint vines on P . 2 . P r o o fs P r oof of T heor em 1. L e t P = x ¡! P y b e a lo n g e s t p a t h in G a n d le t fLi = xi ¡! L iyi : 1 · i · mg b e a vin e o f le n g t h m o n P . P u t 1 6 Relative Lengths of Paths and Cycles in 2-Connected Graphs Li = xi ¡! L iyi ( i = 1 ; :::; m) ; A1 = x1 ¡! P x2; Am = ym¡1 ¡! P ym; Ai = yi¡1 ¡! P xi+1 ( i = 2 ; 3 ; :::; m ¡ 1 ) ; Bi = xi+1 ¡! P yi ( i = 1 ; :::; m ¡ 1 ) ; l ( Ai ) = ai ( i = 1 ; :::; m ) ; l ( Bi ) = bi ( i = 1 ; :::; m ¡ 1 ) : U s in g t h e g ive n vin e L1; L2; :::; Lm, we c o n s t r u c t a n u m b e r o f a p p r o p r ia t e c yc le s a n d o b t a in a lo we r b o u n d fo r t h e c ir c u m fe r e n c e a s a m e a n o f t h e ir le n g t h s . Fir s t , we p u t Q0 = m[ i=1 ( Ai [ Li ) ; Qi = m¡i[ j=i+1 ( Aj [ Lj ) [ Bi [ Bm¡i; wh e r e i 2 f 1 ; 2 ; :::; ( m ¡ 1 ) = 2 g wh e n m is o d d , a n d i 2 f 1 ; 2 ; :::; ( m ¡ 2 ) =2 g wh e n m is e ve n . S in c e l ( Li ) ¸ 1 ( i = 1 ; 2 ; :::; m) a n d a1 ¸ 1 , am ¸ 1 , we h a ve c ¸ l ( Q0 ) = mX i=1 l ( Li ) + a1 + am + m¡1X i=2 ai ¸ m + a1 + am: ( 1 ) Case 1. m is o d d . Fo r e a c h i 2 f 1 ; 2 ; :::; ( m ¡ 1 ) = 2 g, we h a ve c ¸ l ( Qi ) = bi + bm¡i + m¡iX j=i+1 ( aj + l ( Lj ) ) ¸ bi + bm¡i + m¡iX j=i+1 aj + m ¡ 2 i: ( 2 ) B y s u m m in g ( 1 ) a n d ( 2 ) , we g e t m + 1 2 c ¸ m¡1 2X i=0 l ( Qi ) ¸ m¡1X i=1 bi + mX i=1 ai + m + 1 2 m ¡ 2 m¡1 2X i=1 i: S in c e l = Pm¡1 i=1 bi + Pm i=1 ai, we h a ve m + 1 2 c ¸ l + m + 1 2 m ¡ m 2 ¡ 1 4 = l + ( m + 1 ) 2 4 ; im p lyin g t h a t c ¸ 2 l m + 1 + m + 1 2 : Case 2. m is e ve n . A s in Ca s e 1 , fo r e a c h i 2 f 1 ; 2 ; :::; ( m ¡ 2 ) =2 g, c ¸ l ( Qi ) ¸ bi + bm¡i + m¡iX j=i+1 aj + m ¡ 2 i: ( 3 ) Zh. Nikoghosyan 1 7 Case 2.1. 1 2 c ¸ b m 2 . B y s u m m in g ( 1 ) , ( 3 ) a n d 1 2 c ¸ b m 2 , we g e t m 2 c + 1 2 c ¸ à m¡1X i=1 bi + mX i=1 ai ! + m¡2 2X i=0 ( m ¡ 2 i) = l + m 2 m ¡ 2 m¡2 2X i=0 i = l + m ( m + 2 ) 4 ; im p lyin g t h a t c ¸ 2 l ¡ 1 2 m + 1 + m + 1 2 : Case 2.2. 1 2 ( c + 1 ) · b m 2 . P u t R0 = B m 2 [ m 2[ i=1 ( Ai [ Li ) ; Rm = B m 2 [ m[ i= m+2 2 ( Ai [ Li ) : Fu r t h e r , fo r e a c h i 2 f 1 ; 2 ; :::; m¡2 2 g, we p u t Ri = B m 2 [ Bi [ m 2[ j=i+1 ( Aj [ Lj ) ; Rm¡i = B m 2 [ Bm¡i [ m¡i[ j= m+2 2 ( Aj [ Lj ) : Th e n c le a r ly, c ¸ l ( R0 ) = b m 2 + m 2X i=1 ( ai [ l ( Li ) ) ¸ b m 2 + m 2X i=1 ai + m 2 ; ( 4 ) c ¸ l ( Rm ) = b m 2 + mX i= m+2 2 ( ai [ l ( Li ) ) ¸ b m 2 + mX i= m+2 2 ai + m 2 : ( 5 ) Fu r t h e r m o r e , fo r e a c h i 2 f 1 ; 2 ; :::; m¡2 2 g, c ¸ l ( Ri ) = b m 2 + bi + m 2X j=i+1 ( aj + l ( Lj ) ) ¸ b m 2 + bi + m 2 ¡ i; ( 6 ) 1 8 Relative Lengths of Paths and Cycles in 2-Connected Graphs c ¸ l ( Rm¡i ) = b m 2 + bm¡i + m¡iX j= m+2 2 ( aj + l ( Lj ) ) ¸ b m 2 + bm¡i + m 2 ¡ i: ( 7 ) B y s u m m in g ( 4 ) , ( 5 ) , ( 6 ) a n d ( 7 ) , we g e t mc ¸ mb m 2 + mX i=1 ai + à m¡1X i=1 bi ¡ b m 2 ! + m m 2 ¡ 2 m¡2 2X i=1 i = ( m ¡ 1 ) b m 2 + à mX i=1 ai + m¡1X i=1 bi ! + m2 + 2 m 4 ¸ ( m ¡ 1 ) ( c + 1 ) 2 + l + m2 + 2 m 4 ; im p lyin g t h a t c ¸ 2 l m + 1 + ( m + 2 ) 2 ¡ 6 2 ( m + 1 ) ¸ 2 l ¡ 1 2 m + 1 + m + 1 2 : Th e o r e m 1 is p r o ve d . P r oof of T heor em 2. B y ( 1 ) , c ¸ m + a1 + a2 ¸ m + 2 . L e t c = m + y + 2 fo r s o m e in t e g e r y ¸ 0 . B y s u b s t it u t in g m = c ¡ y ¡ 2 in Th e o r e m 1 , we g e t c ¸ q 4 l + ( y + 1 ) 2 = q 4 l + ( c ¡ m ¡ 1 ) 2 wh e n m is o d d ; a n d c ¸ q 4 l + y2 = q 4 l + ( c ¡ m ¡ 2 ) 2 wh e n m is e ve n . Th e o r e m 2 is p r o ve d . To s h o w t h e s h a r p n e s s o f t h e b o u n d s in Th e o r e m s 1 a n d 2 , le t P = x ¡! P y b e a p a t h a n d le t fLi = xi ¡! L iyi : 1 · i · mg b e a vin e o n P . P u t Li = xi ¡! L iyi ( i = 1 ; :::; m) ; A1 = x1 ¡! P x2; Am = ym¡1 ¡! P ym; Ai = yi¡1 ¡! P xi+1 ( i = 2 ; 3 ; :::; m ¡ 1 ) ; Bi = xi+1 ¡! P yi ( i = 1 ; :::; m ¡ 1 ) ; l ( Ai ) = ai ( i = 1 ; :::; m ) ; l ( Bi ) = bi ( i = 1 ; :::; m ¡ 1 ) : L e t y ¸ 0 b y a n in t e g e r a n d a1 = am = y 2 + 1 ; a2 = a3 = ::: = am¡1 = 0 ; bi = bm¡i = y 2 + i + 1 ( i = 1 ; 2 ; :::; b( m ¡ 1 ) =2 c) : Zh. Nikoghosyan 1 9 If m is o d d , t h e n it is e a s y t o s e e t h a t c = m + y + 2 = 2 l m + 1 + m + 1 2 = q 4 l + ( c ¡ m ¡ 1 ) 2: If m is e ve n , we p u t bm=2 = y 2 + m+2 2 , im p lyin g t h a t c = m + y + 2 = 2 l ¡ 1 2 m + 1 + m + 1 2 = q 4 l + ( c ¡ m ¡ 1 ) 2 ¡ 1 : Th u s , t h e b o u n d s in Th e o r e m s 1 a n d 2 a r e b e s t p o s s ib le . References [1 ] J.A . B o n d y a n d U .S .R . Mu r t y, Graph Theory with Applications, Ma c m illa n , L o n d o n a n d E ls e vie r , N e w Y o r k, 1 9 7 6 . [2 ] G.A . D ir a c , \ S o m e t h e o r e m s o n a b s t r a c t g r a p h s " , P roc. L ondon, M ath. Soc., vo l. 2 , p p . 6 9 -8 1 , 1 9 5 2 . [3 ] J. A . B o n d y, B asic Graph Theory: P aths and Circuits, H a n d b o o k o f c o m b in a t o r ic s , vo l. 1 ,2 , E ls e vie r , A m s t e r d a m , 1 9 9 0 . [4 ] J. A . B o n d y a n d S . C. L o c ke , \ R e la t ive le n g t h s o f p a t h s a n d c yc le s in k-c o n n e c t e d g r a p h s " , Annals of D iscrete M athematics, vo l. 8 , p p . 2 5 3 -2 5 9 , 1 9 8 0 . [5 ] S .C. L o c ke , \ R e la t ive le n g t h s o f p a t h s a n d c yc le s in k-c o n n e c t e d g r a p h s " , J . of Comb. Theory, S e r ie s B 3 2 , p p . 2 0 6 -2 2 2 , 1 9 8 2 . Submitted 25.05.2019, accepted 10.10.2019. ÞÕóݻñÇ ¨ óÇÏÉ»ñÇ Ñ³ñ³µ»ñ³Ï³Ý »ñϳñáõÃÛáõÝÝ»ñÇ Ù³ëÇÝ 2-ϳå³Ïóí³Í ·ñ³ýÝ»ñáõÙ Äáñ³ ¶. ÜÇÏáÕáëÛ³Ý ÐÐ ¶²² ÆÝýáñÙ³ïÇϳÛÇ ¨ ³íïáÙ³ï³óÙ³Ý åñáµÉ»ÙÝ»ñÇ ÇÝëïÇïáõï e-mail: zhora@ipia.sci.am ²Ù÷á÷áõÙ ¸Çóáõù l-Á 2-ϳå³Ïóí³Í G ·ñ³ýÇ ³Ù»Ý³»ñϳñ ßÕóÛÇ »ñϳñáõÃÛáõÝÝ ¿, ÇëÏ c-Ý` ³Ù»Ý³»ñϳñ óÇÏÉÇ »ñϳñáõÃÛáõÝÁ: ¸Çñ³ÏÁ 1952-ÇÝ óáõÛó ïí»ó, áñ c > p 2 l, ÙÇ³Å³Ù³Ý³Ï Ýß»Éáí, áñ Çñ³Ï³ÝáõÙ c ¸ 2 p l, áñÁ Ñݳñ³íáñ É³í³·áõÛÝÝ ¿, µ³Ûó ³Ûë ·Ý³Ñ³ï³Ï³ÝÇ ³å³óáõÛóÁ µ³í³Ï³Ý³ã³÷ µ³ñ¹ ¿: ¸Çóáõù L1; L2; :::; Lm- Á G ·ñ³ýÇ ³Ù»Ý³»ñϳñ ßÕóÛÇ íñ³ ÙÇ µ³Õ»Õ ¿: Ü»ñϳ ³ß˳ï³ÝùáõÙ m å³ñ³Ù»ïñÇ û·ÝáõÃÛ³Ùµ µVñíáõÙ ¿ ÙÇ ³í»ÉÇ ÁݹѳÝáõñ ·Ý³Ñ³ï³Ï³Ý, áñï»ÕÇó 2 0 Relative Lengths of Paths and Cycles in 2-Connected Graphs c ¸ 2 p l ·Ý³Ñ³ï³Ï³ÝÁ µËáõÙ ¿ áñå»ë ³ÝÙÇç³Ï³Ý ѻ勉Ýù` ÑÇÙÝí³Í áã µ³ñ¹ ¹³ïáÕáõÃÛáõÝÝ»ñÇ íñ³: ´³Ý³ÉÇ µ³é»ñ` ³Ù»Ý³»ñϳñ óÇÏÉ, ³Ù»Ý³»ñϳñ ßÕó, ³Ù»Ý³»ñϳñ óÇÏÉÇ »ñϳñáõÃÛáõÝ, µ³Õ»Õ: Îòíîñèòåëüíûå äëèíû öåïåé è öèêëîâ â 2-ñâÿçíûõ ãðàôàõ Æîðà Ã. Íèêîãîñÿí Èíñòèòóò ïðîáëåì èíôîðìàòèêè è àâòîìàòèçàöèè ÍÀÍ ÐÀ e-mail: zhora@ipia.sci.am Àííîòàöèÿ Ïóñòü l îáîçíà÷àåò äëèíó äëèííåéøåé öåïè ãðàôà G, à c îáîçíà÷àåò äëèíó äëèííåéøåãî öèêëà.  1952ã. Äèðàê äîêàçàë, ÷òî c > p 2 l, îòìåòèâ, ÷òî ”â ñàìîì äåëå èìååò ìåñòî c ¸ 2 p l, ÷òî óëó÷øèòü íåâîçìîæíî, íî äîêàçàòåëüñòâî ýòîé îöåíêè äîñòàòî÷íî ñëîæíî”. Ïóñòü L1; L2; :::; Lm - ïëþù íà äëèííåéøåé öåïè ãðàôà G.  íàñòîÿùåé ðàáîòå ïðèâîäèòñÿ íîâàÿ áîëåå îáùàÿ îöåíêà, îòêóäà âûòåêàåò ñïðàâåäëèâîñòü îöåíêè c ¸ 2 p l êàê íåïîñðåäñòâåííîå ñëåäñòâèå, îñíîâàííîå íà ýëýìåíòàðíûõ ñîîáðàæåíèé. Êëþ÷åâûå ñëîâà: äëèííåéøèé öèêë, äëèíííåéøàÿ öåïü, äëèíà äëèííåéøåãî öèêëà, ïëþù.