1DSpin-glass_tpel.DVI Mathematical Problems of Computer Science 35, 86{98, 2011. Statistical P r oper ties of I deal E nsemble of Disor der ed 1D Ster ic Spin-Chains A s h o t S . Ge vo r kya n , H a ko b G. A b a jya n a n d H a yk S . S u kia s ya n Institute for Informatics and Automation Problems of NAS of RA e-mail g ashot@sci.am, habajyan@ipia.sci.am, haikarin@netsys.am Abstract The statistical properties of ensemble of disordered 1D steric spin-chains (SSC) of various length are investigated. Using 1D spin-glass type classical Hamiltonian, the recurrent trigonometrical equations for stationary points and corresponding conditions for the construction of stable 1D SSCs are found. The ideal ensemble of spin-chains is analyzed and the latent interconnections between random angles and interaction constants for each set of three nearest-neighboring spins are found. It is analytically proved and by numerical calculation is shown that the interaction constant satis¯es Le¶vy's alpha-stable distribution law. Energy distribution in ensemble is calculated de- pending on di®erent conditions of possible polarization of spin-chains. It is speci¯cally shown that the dimensional e®ects in the form of set of local maximums in the energy distribution arise when the number of spin-chains M << N 2x (where Nx is the number of spins in a chain) while in the case when M / N 2x energy distribution has one global maximum and the ensemble of spin-chains satis¯es Birkho®'s ergodic theorem. E®ec- tive algorithm for parallel simulation of problem which includes calculation of di®erent statistic parameters of 1D SSCs ensemble is elaborated. Refer ences [1 ] K . B in d e r a n d A . P . Y o u n g , \ S p in g la s s e s : E xp e r im e n t a l fa c t s , t h e o r e t ic a l c o n c e p t s , a n d o p e n qu e s t io n s " , R ev. M od. P hysics, vo l. 5 8 , n o . 4 , p p . 8 0 1 -9 7 6 , 1 9 8 6 . [2 ] M. M¶e z a r d , G. P a r is i, M. A . V ir a s o r o ,Spin Glass Theory and B eyond,W o r ld S c ie n t ī c , S in g a p o r e , 1 9 8 7 . [3 ] A . P . Y o u n g ( e d .) , Spin Glasses and R andom F ields, W o r ld S c ie n t i¯ c , S in g a p o r e , 1 9 9 8 . [4 ] R . Fis c h a n d A . B . H a r r is , \ S p in -g la s s m o d e l in c o n t in u o u s d im e n s io n a lit y" , P hys. R ev. L et., 47, p .6 2 0 , 1 9 8 1 . [5 ] A . B o vie r , Statistical M echanics of D isordered Systems: A M athematical P erspective, Ca m b r id g e S e r ie s in S t a t is t ic a l a n d P r o b a b ilis t ic Ma t h e m a t ic s , p . 3 0 8 , 2 0 0 6 . [6 ] Y . Tu , J. Te r s o ® a n d G. Gr in s t e in , Structure and E nergetic of the Si and SiO2 Inter- face " , P h ys . R e v. L e t t ., 81, p . 4 8 9 9 , 1 9 9 8 . [7 ] K . V . R . Ch a r y, G. Go vil, \ N MR in B io lo g ic a l S ys t e m s : Fr o m Mo le c u le s t o H u m a n " , F ocus on Structural B iology 6, S p r in g e r , p . 5 1 1 , 2 0 0 8 . 8 6 A. Gevorkyan, H. Abajyan and H. Sukiasyan 8 7 [8 ] E . B a a ke , M. B a a ke a n d H . W a g n e r , \ Is in g Qu a n t u m Ch a in is a E qu iva le n t t o a Mo d e l o f B io lo g ic a l E vo lu t io n " , P hys. R ev. L et., 78( 3 ) , p p . 5 5 9 -5 6 2 , 1 9 9 7 . [9 ] A . S . Ge vo r kya n e t a l., \ N e w Ma t h e m a t ic a l Co n c e p t io n a n d Co m p u t a t io n A lg o r it h m fo r S t u d y o f Qu a n t u m 3 D D is o r d e r e d S p in S ys t e m U n d e r t h e In ° u e n c e o f E xt e r n a l Fie ld " , Trans. On Comput. Sci., V II, L N CS 1 3 2 -1 5 3 , S p in g e r -V e r la g e , 1 0 .1 0 0 7 / 9 7 8 -3 - 6 4 2 -1 1 3 8 9 -5 8 . [1 0 ] S . F. E d wa r d s a n d P . W . A n d e r s o n , Th e o r y o f s p in g la s s e s , J. P h ys . F 9, p . 9 6 5 , 1 9 7 5 . [1 1 ] J. vo n N e u m a n , \ P h ys ic a l a p p lic a t io n s o f t h e e r g o d ic h yp o t h e s is " , P roc. Nat. Acad. Sci. USA, 18( 3 ) : p p . 2 6 3 -2 6 6 ( 1 9 3 2 ) . [1 2 ] G. D . B ir kh o ®, \ W h a t is e r g o d ic t h e o r e m ?" , American M athematical M onthly, vo l. 4 9 , n o . 4 , p p . 2 2 2 -2 2 6 , 1 9 3 1 . [1 3 ] S . FlÄu g g e , P ractical quantum mechanics I, S p r in g e r -V e r la g , B e r lin -H e id e lb e r g - N e w Y o r k, 1 9 7 1 . [1 4 ] M. R . S p ie g le , \ Th e o r y a n d p r o b le m s o f p r o b a b ilit y a n d s t o c h a s t ic s " , New-York, M cGraw-Hill, p p . 1 1 4 -1 1 5 , 1 9 9 2 . [1 5 ] I. Ib r a g im o v a n d Y u . L in n ik, Independent and Stationary Sequences of R andom Vari- ables, W o lt e r s -N o o r d h o ® P u b lis h in g Gr o n in g e n , Th e N e t h e r la n d s , 1 9 7 1 . [1 6 ] J. P . N o la n , \ S t a b le d is t r ib u t io n s : m o d e ls fo r h e a vy t a ile d d a t a ( 2 0 0 9 -0 2 -2 1 ) . en:wikipedia:org=Stable=distribution. [1 7 ] H . G. K a t z g r a b e r , A . K . H a r t m a n n a n d A . P . Y o u n g , \ N e w in s ig h t s fr o m o n e - d im e n s io n a l s p in g la s s e s " , A r X iv:0 8 0 3 .3 4 1 7 v1 [c o n d -m a t .d is -n n ], 2 0 0 8 . ƹ»³É³Ï³Ý 1D ï³ñ³Í³Ï³Ý ãϳñ·³íáñí³Í ëåÇÝ-ßÕóݻñÇ Ñ³ÙáõÛÃÇ íÇ׳ϳ·ñ³Ï³Ý ѳïÏáõÃÛáõÝÝ»ñÁ ². ¶¨áñ·Û³Ý, Ð. ²µ³çÛ³Ý ¨ Ð. êáõùdzëÛ³Ý ²Ù÷á÷áõÙ ²ß˳ï³ÝùáõÙ áõëáõÙݳëÇñí³Í »Ý ï³ñµ»ñ »ñϳñáõÃÛ³Ùµ ǹ»³É³Ï³Ý 1D ï³- ñ³Í³Ï³Ý ãϳñ·³íáñí³Í ëåÇÝ-ßÕóݻñÇ Ñ³ÙáõÛÃÇ (î.â.¸.ê.Þ.Ð) íÇ׳ϳ·ñ³Ï³Ý ѳïÏáõÃÛáõÝÝ»ñÁ: ú·ï³·áñÍ»Éáí 1D ëåÇÝ-³å³ÏÇ ïÇåÇ ¹³ë³Ï³Ý ѳÙÇÉïáÝdzÝÁ, ·ïÝí»É »Ý ëï³óÇáݳñ Ï»ïÇ é»Ïáõñ»Ýï »é³ÝÏÛáõݳã³÷³Ï³Ý ѳí³ë³ñáõÙÝ»ñÁ ¨ ѳٳå³ï³ëË³Ý å³ÛÙ³ÝÝ»ñ‘ 1D ϳÛáõÝ î.â.¸.ê.Þ.Ð. ϳéáõó»Éáõ ѳٳñ: ì»ñÉáõÍí»É ¿ ëåÇÝ-ßÕóݻñÇ Ç¹»³É³Ï³Ý ѳÙáõÛÃÁ ¨ Ûáõñ³ù³ÝãÛáõñ 3 ³Ù»Ý³Ùáï ëåÇÝ»ñÇ µ³½ÙáõÃÛ³Ý Ñ³Ù³ñ ·ïÝí»É »Ý ³ÝÏÛáõݳÛÇÝ ¨ ÷á˳½¹»óáõÃÛ³Ý Ñ³ëï³ïáõÝÇ ÙÇç¨ Ã³ùÝí³Í ϳå»ñÁ: ²Ý³ÉÇïÇÏáñ»Ý ³å³óáõóí»É ¿ ¨ Ãí³ÛÇÝ Ñ³ßí³ñÏÝ»ñÇ ÙÇçáóáí óáõÛó ¿ ïñí»É, áñ ÷á˳½¹»óáõÃÛ³Ý Ñ³ëï³ïáõÝÁ µ³í³ñ³ñáõÙ ¿ È»íÇÇ ³Éý³-ϳÛáõÝ µ³ßËÙ³Ý ûñ»ÝùÇÝ: гÙáõÛÃÇ ¿Ý»ñ·Ç³ÛÇ µ³ßËáõÙÁ ѳßíí³Í ¿ ϳËí³Í ëåÇÝ-ßÕóݻñÇ ï³ñµ»ñ Ñݳñ³íáñ µ¨»é³óí³ÍáõÃÛ³Ý å³ÛÙ³ÝÝ»ñÇó: سëݳíáñ³å»ë óáõÛó ¿ ïñí³Í, áñ >Ý»ñ·Ç³ÛÇ µ³ßËÙ³Ý Ù»ç ÉáÏ³É Ù³ùëÇÙáõÙÝ»ñÇ µ³½ÙáõÃÛ³Ý ï»ëùáí ³é³ç³ÝáõÙ »Ý ã³÷³ÛÇÝ >ý»ÏïÝ»ñ, »ñµ ëåÇÝ-ßÕóݻñÇ ù³Ý³ÏÁ M << ( Nx ) 2 (áñï»Õ Nx ßÕóÛáõÙ ëåÇÝÝ»ñÇ ù³Ý³ÏÝ ¿): ²ÛÝ ¹»åùáõÙ, »ñµ M ( Nx ) 2, ¿Ý»ñ·Ç³ÛÇ µ³ßËáõÙÝ áõÝÇ 1 ·Éáµ³É Ù³ùëÇÙáõÙ ¨ ëåÇÝ ßÕóݻñÇ Ñ³ÙáõÛÃÁ µ³í³ñ³ñáõÙ ¿ ´ÇñÏÑáýÇ >ñ·á¹ÇÏ Ã»áñ»ÙÇÝ: êï»ÕÍí³Í ¿ ³ñ¹Ûáõݳí»ï ³É·áñÇÃÙ ËݹñÇ ½áõ·³Ñ»é ÙṻɳíáñÙ³Ý Ñ³Ù³ñ, áñÁ Ý»ñ³éáõÙ ¿ 1D î.â.¸.ê.Þ. ѳÙáõÛÃÇ ï³ñµ»ñ íÇ׳ϳ·ñ³Ï³Ý å³ñ³Ù»ïñ»ñÇ Ñ³ßí³ñÏÁ: