D:\sbornik\...\Article.DVI Mathematical Problems of Computer Science 40, 23{30, 2013. On Application of Optimal M ultihypothesis T ests for the B ounds Constr uction for the I ncr ease of Gr owth Rate of Stock M ar ket E vg u e n i A . H a r o u t u n ia n , A r t a k R . Ma r t ir o s ya n a n d A r a m O. Y e s s a ya n Institute for Informatics and Automation Problems of NAS RA Yerevan, Armenia e-mail: eghishe@ipia.sci.am Abstract In the present paper new bounds for increase of the growth rate of stock market (when an erroneous probability distribution is used) are obtained applying the matrix of reliabilities of optimal tests. Keywords: Hypothesis testing, Stock market, Growth rate, Portfolio. 1 . In t r o d u c t io n Th e m o d e l o f s t o c k m a r ke t c o n s id e r e d in t h is p a p e r is p r e s e n t e d in [1 ], wh e r e t h e b o u n d fo r t h e in c r e a s e o f t h e g r o wt h r a t e o f s t o c k m a r ke t in c a s e o f c o n t in u o u s d is t r ib u t io n s is c o n s t r u c t e d . Th is m o d e l a n d t h e c o r r e s p o n d in g o p t im a l p o r t fo lio p r o b le m s we r e d e e p ly in - ve s t ig a t e d in [1 ] { [8 ]. Th e a p p lic a t io n o f r e s u lt s o n t h e h yp o t h e s is o f lo g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l ( L A O) t e s t in g ( [9 ] { [1 3 ]) in p o r t fo lio t h e o r y is in t r o d u c e d in [1 1 ], wh e r e u s in g e r r o r p r o b - a b ilit ie s a n d r a lia b ilit ie s , n e w, m o r e e xa c t b o u n d s a r e fo u n d fo r t h e in c r e a s e o f t h e g r o wt h r a t e o f s t o c k m a r ke t . U s in g t h e e xis t e n c e t h e o r e m o f L A O t e s t [1 0 ] b o u n d s o b t a in e d in [1 1 ] a r e r e ¯ n e d in t h e p r e s e n t p a p e r . W e s t u d y a s t o c k m a r ke t wit h K ( ¸ 1 ) s t o c ks d e ¯ n e d b y a r a n d o m ve c t o r X = ( X1; X2; :::; XK ) , Xk ¸ 0 ; k = 1 ; K; wh e r e t h e p r ic e r e la t ive s ( t h e r a t io o f t h e p r ic e a t t h e e n d o f t h e d a y t o t h e p r ic e a t t h e b e g in n in g o f t h e d a y) Xk, k = 1 ; K; a r e in d e p e n d e n t r a n d o m va r ia b le s ( R V s ) wit h u n kn o wn p r o b a b ilit y d is t r ib u t io n s ( P D s ) d e ¯ n e d o n t h e ¯ n it e s e t X . W e a s s u m e t h a t M d is t in c t P D s Gm; m = 1 ; M , a r e g ive n o n X wh ic h a r e p o s s i- b le P D s fo r R V s Xk; k = 1 ; K. If t h e r ig h t P D o f t h e R V Xk is Gmk ; k = 1 ; K, t h e n t h e jo in t P D o f t h e s t o c k m a r ke t ve c t o r X will b e Gm1;m2;:::;mK ( x) = KQ k=1 Gmk ( xk ) ; wh e r e x = ( x1; x2; :::; xK ) 2 X K : P o r t fo lio ve c t o r b = ( b1; b2; :::; bK ) , bk ¸ 0 , k = 1 ; K, P bk = 1 , is a n a llo c a t io n o f t h e we a lt h a c r o s s t h e s t o c ks , wh e r e bk is t h e fr a c t io n o f o n e 's we a lt h in ve s t e d in s t o c k k [1 ]. 2 3 2 4 On Application of Optimal Multihypothesis Tests for the Bounds Construction of Stock Market W h e n a n in ve s t o r u s e s a p o r t fo lio b fo r s t o c k m a r ke t X, t h e n t h e we a lt h r e la t ive will b e S = btX ( bt is t h e t r a n s p o s e d ve c t o r o f b) : A n d if t h e in ve s t o r in ve s t s in t h e s t o c k m a r ke t fo r N c o n s e c u t ive d a ys a n d u s e s t h e s a m e b e t t in g s t r a t e g y b e a c h d a y, t h e n t h e we a lt h a t t h e e n d o f N d a ys is g ive n b y SN = NQ n=1 btXn; wh e r e t h e s t o c k m a r ke t ve c t o r s X1; X2; ::: a r e in d e p e n d e n t a n d id e n t ic a lly d is t r ib u t e d wit h P D Gm1;m2;:::;mK ( x ) : Th e o p t im a l g r o wt h r a t e is W ¤ ( G ) = m a x b W ( b; G ) , wh e r e W ( b; G ) = E ( lo g btX ) is t h e g r o wt h r a t e o f a s t o c k m a r ke t a t p o r t fo lio b = ( b1; b2; :::; bK ) wit h r e s p e c t t o a s t o c k P D Gm1;m2;:::;mK ( if t h e lo g a r it h m is t o b a s e 2 , t h e g r o wt h r a t e is c a lle d a d o u b lin g r a t e [1 ]) . Th e n a p o r t fo lio b¤ = A r g ( m a x b W ( b; G ) ) , is c a lle d a lo g { o p t im a l p o r t fo lio o r a g r o wt h o p t im a l p o r t fo lio . In t h is p a p e r we a s s u m e t h a t P D Gm1;m2;:::;mK is u n kn o wn a n d m u s t b e d e t e r m in e d o n t h e b a s e o f s a m p le ( r e s u lt s o f N in d e p e n d e n t o b s e r va t io n s ) xn = ( x1;n; x2;n; : : : ; xK;n ) , n = 1 ; N; wh e r e xk;n is a r e s u lt o f t h e n { t h r e a liz a t io n o f t h e p r ic e r e la t ive Xk; k = 1 ; K: W it h t h e s a m p le xN = ( x1; x2; :::; xN ) we c a n c o n s id e r t h e e m p ir ic a l P D o f t h e s t o c k m a r ke t a ft e r N d a ys : G(N)m1;m2;:::;mK ( x N ) = NY n=1 Gm1;m2;:::;mK ( xn ) = NY n=1 KY k=1 Gmk ( xk;n ) : W e c o n s id e r t h e c a s e , wh e n e a c h P D fr o m t h e g ive n P D s Gm c a n b e a d o p t e d fo r s o m e p r ic e r e la t ive s s im u lt a n e o u s ly. Th e p r o c e d u r e o f d e c is io n m a kin g is a n o n -r a n d o m iz e d t e s t '(N); wh ic h c a n b e d e ¯ n e d b y a d ivis io n o f t h e s a m p le s p a c e X KN in t o M K d is jo in t s u b s e t s A(N)l1;l2;:::;lK = fx N : '(N) ( xN ) = ( l1; l2; :::; lK ) g; lk = 1 ; M; k = 1 ; K: Th e p r o b a b ilit y o f t h e e r r o n e o u s a c c e p t a n c e o f h yp o t h e s is Hl1;l2;:::;lK p r o vid e d t h a t Hm1;m2;:::;mK is t r u e , fo r ( l1; l2; :::; lK ) 6= ( m1; m2; :::; mK ) ; is [9 ] ® (N ) l1;l2;:::;lK jm1;m2;:::;mK = G (N) m1;m2;:::;mK ( A(N )l1;l2;:::;lK ) : Fo r t h e p r o b a b ilit y o f r e je c t io n o f h yp o t h e s is Hm1;m2;:::;mK , wh e n it is t r u e t h e fo llo win g d e ¯ n it io n is a d o p t e d : ® (N ) m1;m2;:::;mK jm1;m2;:::;mK = X (l1;l2;:::;lK ) 6=(m1;m2;:::;mK ) ® (N ) l1;l2;:::;lK jm1;m2;:::;mK : Fo r t h e s e qu e n c e ' o f t e s t s we will c o n s id e r e r r o r p r o b a b ilit y e xp o n e n t s wh ic h a r e c a lle d r e lia b ilit ie s : ¡ lim N !1 1 N lo g ® (N ) l1;l2;:::;lK jm1;m2;:::;mK = El1;l2;:::;lKjm1;m2;:::;mK ¸ 0 ; mk; lk = 1 ; M: It is kn o wn , t h a t Em1;m2;:::;mK jm1;m2;:::;mK = m in (l1;l2;:::;lK )6=(m1;m2;:::;mK ) El1;l2;:::;lKjm1;m2;:::;mK : Th e m a t r ix E = fEl1;l2;:::;lKjm1;m2;:::;mK g is a m a t r ix o f r e lia b ilit ie s o f t h e s e qu e n c e o f t e s t s ': W e c a ll t h e t e s t s e qu e n c e '¤ L A O if fo r t h e g ive n p o s it ive va lu e s o f c e r t a in p a r t o f e le m e n t s o f t h e m a t r ix o f r e lia b ilit ie s E ( '¤ ) t h e p r o c e d u r e p r o vid e s m a xim a l va lu e s fo r a ll t h e o t h e r e le m e n t s o f it . E. Haroutunian, A. Martirosyan, A. Yessayan 2 5 2 . P r o b le m S t a t e m e n t L e t t h e t r u e P D o f t h e s t o c k m a r ke t X = ( X1; X2; :::; XK ) b e Gm1;m2;:::;mK wit h t h e c o r r e s p o n d in g lo g { o p t im a l p o r t fo lio bm1;m2;:::;mK a n d le t bl1;l2;:::;lK ; ( l1; l2; :::; lK ) 6= ( m1; m2; :::; mK ) b e a lo g { o p t im a l p o r t fo lio c o r r e s p o n d in g t o s o m e o t h e r , wr o n g P D Gl1;l2;:::;lK : W h e n t h e in c o r r e c t p o r t fo lio bl1;l2;:::;lK is u s e d in s t e a d o f bm1;m2;:::;mK , t h e n t h e in c r e a s e o f t h e g r o wt h r a t e is t h e fo llo win g : ¢ W = W ( bm1;m2;:::;mK ; Gm1;m2;:::;mK ) ¡ W ( bl1;l2;:::;lK ; Gm1;m2;:::;mK ) ¸ 0 : Th e in ve s t o r c a n u s e t h e s a m e in c o r r e c t p o r t fo lio fo r t h e n e xt p e r io d a n d h a ve s o m e ¯ n a n c ia l lo s s e s . Th e b o u n d s fo r ¢ W will s h o w t h e m a xim a l p o s s ib le a m o u n t o f lo s s e s . Co n s id e r t h e fo llo win g qu a n t it ie s : ql1;l2;:::;lKm1;m2;:::;mK ( x ) = btm1;m2;:::;mK x btl1;l2;:::;lK x Gl1;l2;:::;lK ( x ) ; x 2 X K gl1;l2;:::;lKm1;m2;:::;mK = X x2X K Gm1;m2;:::;mK ( x) lo g ql1;l2;:::;lKm1;m2;:::;mK ( x ) Gm1;m2;:::;mK ( x) : A s a d ir e c t c o n s e qu e n c e o f t h e K u h n { Tu c ke r c o n d it io n s , it wa s p r o ve d in [1 ] a n d [3 ] t h a t E S S¤ · 1 ; fo r a ll S; wh e r e S ¤ = b¤tX is t h e r a n d o m we a lt h r e s u lt in g fr o m t h e lo g { o p t im a l p o r t fo lio b¤; a n d S = btX is t h e we a lt h r e s u lt in g fr o m a n y o t h e r p o r t fo lio b: Fr o m in e qu a lit y E S S¤ · 1 a n d t h e fa c t t h a t bl1;l2;:::;lK is a lo g { o p t im a l p o r t fo lio fo r Gl1;l2;:::;lK ; we h a ve ql1;l2;:::;lKm1;m2;:::;mK ( x ) · X x2X K ql1;l2;:::;lKm1;m2;:::;mK ( x) · 1 : L e t D ( RkP ) = P z2Z R( z ) lo g R(z) P (z) < 1 b y ( K u llb a c k - L e ib le r ) d ive r g e n c e fo r P D s b y R a n d P; z 2 Z: T heor em 1 [11]: If ( l1; l2; :::; lK ) 6= ( m1; m2; :::; mK ) ; then 4W = D ( Gm1;m2;:::;mK k Gl1;l2;:::;lK ) + gl1;l2;:::;lKm1;m2;:::;mK ; where gl1;l2;:::;lKm1;m2;:::;mK · 0 with equality if and only if q l1;l2;:::;lK m1;m2;:::;mK ( x) = Gm1;m2;:::;mK ( x) ; for all x 2 X K : Cor ollar y 1: The analog of the bound exposed in [1] in the case of discrete P D s is 4W · D ( Gm1;m2;:::;mK k Gl1;l2;:::;lK ) : Fr o m Th e o r e m 1 it fo llo ws t h a t fo r e a c h p a ir ( l1; l2; :::; lK ) 6= ( m1; m2; :::; mK ) t h e in ve s t o r ¯ r s t m u s t c h e c k t h e c o n d it io n ql1;l2;:::;lKm1;m2;:::;mK ( x) = Gm1;m2;:::;mK ( x) ; fo r a ll x 2 X K : In s u c h c a s e s h is lo s s e s will b e m a xim a l. A ll o t h e r c a s e s ( l1; l2; :::; lK ) 6= ( m1; m2; :::; mK ) ( a n d t h e c o r r e s p o n d in g p o r t fo lio s bl1;l2;:::;lK 6= bm1;m2;:::;mK ) we will c a ll c a s e s ( p o r t fo lio s ) o f \ nonmaximal losses " a n d will a s s u m e t h a t t h e fo llo win g c o n d it io n is fu l¯ lle d : gl1;l2;:::;lKm1;m2;:::;mK ¸ ¡D ( Gl1;l2;:::;lK k Gm1;m2;:::;mK ) : ( 1 ) 2 6 On Application of Optimal Multihypothesis Tests for the Bounds Construction of Stock Market 3 . N e w B o u n d fo r Gr o wt h R a t e L e t N ( xjx ) b e t h e n u m b e r o f r e p e t it io n s o f t h e e le m e n t x 2 X in t h e ve c t o r x 2 X N ; a n d le t Q = fQ( x ) = N ( xjx ) =N; x 2 X g b e t h e e m p ir ic a l d is t r ib u t io n ( t yp e ) o f t h e s a m p le x: Fo r t h e g ive n p o s it ive d ia g o n a l e le m e n t s E1j1; E2j2; : : : ; EM¡1jM ¡1 o f t h e r e lia b ilit y m a t r ix we c o n s id e r s e t s o f P D s Rl = fQ : D ( QjjGl ) · Eljlg; l = 1 ; M ¡ 1 ; ( 2 ) RM = fQ : D ( QjjGl ) > Eljl; l = 1 ; M ¡ 1 g; ( 3 ) a n d d e ¯ n e t h e va lu e s fo r t h e e le m e n t s o f t h e fu t u r e r e lia b ilit y m a t r ix o f t h e L A O t e s t s s e qu e n c e a s fo llo ws : E¤ljl = E ¤ ljl ( Eljl ) = Eljl; l = M ¡ 1 ; ( 4 ) E¤ljm = E ¤ ljm ( Eljl ) = in f Q2R l D ( QjjGm ) ; m = 1 ; M ; m 6= l; l = 1 ; M ¡ 1 ; ( 5 ) E¤Mjm = E ¤ Mjm ( E1j1; : : : ; EM¡1jM ¡1 ) = in f Q2R M D ( QjjGm ) ; m = 1 ; M ¡ 1 ; ( 6 ) E¤MjM = E ¤ M jM ( E1j1; : : : ; EM¡1jM¡1 ) = m in l=1;M¡1 E¤Mjl: ( 7 ) Th e L A O t e s t e xis t in g t h e o r e m c o n c e r n in g o n e o b je c t is t h e fo llo win g [1 0 ]: T heor em 2 [10]: If the distributions Gm are di®erent, that is all divergences D ( GljjGm ) , l 6= m, l; m = 1 ; M , are strictly positive, then two statements hold: a) when the given numbers E1j1; E2j2; : : : ; EM¡1jM ¡1 satisfy the conditions 0 < E1j1 < m in l=2;M D ( GljjG1 ) ; ( 8 ) 0 < Emjm < m in [ m in l=1;m¡1 E¤ljm ( Eljl ) ; m in l=m+1;M D ( GljjGm ) ]; m = 2 ; M ¡ 1 ; ( 9 ) then there exists a L AO sequence of tests '¤, the elements of the reliability matrix of which E ( '¤ ) = fE¤ljmg are de¯ned in (4){(7) and all of them are strictly positive; b) even if one of the conditions (8) or (9) is violated, then the reliability matrix of any such test includes at least one element equal to zero. T heor em 3: W hen the ¯rst M -1 diagonal elements of reliability matrix are ¯xed so that the numbers E1j1; E2j2; : : : ; EM¡1jM ¡1 satisfy the conditions (8)-(9), then in case of condition (1), for portfolios bl1;l2;:::;lK 6= bm1;m2;:::;mK ; ( l1; l2; :::; lK ) 6= ( m1; m2; :::; mK ) ; of non - maximal losses the following bound is true: ¢ W · D ( Gm1;m2;:::;mK k Gl1;l2;:::;lK ) ¡E¤l1;l2;:::;lKjm1;m2;:::;mK ; wh e r e E¤l1;l2;:::;lKjm1;m2;:::;mK = X k=1;K: mk 6=lk E¤lkjmk ( 'k ) : P r oof: B y Co r o lla r y 1 fr o m [1 1 ] in c a s e o f c o n d it io n ( 1 ) , fo r p o r t fo lio s bl1;l2;:::;lK 6= bm1;m2;:::;mK ; ( l1; l2; :::; lK ) 6= ( m1; m2; :::; mK ) ; o f n o n -m a xim a l lo s s e s we h a ve ¢ W · D ( Gm1;m2;:::;mK k Gl1;l2;:::;lK ) ¡El1;l2;:::;lKjm1;m2;:::;mK : E. Haroutunian, A. Martirosyan, A. Yessayan 2 7 Th e r e fo r e t h e b e s t b o u n d fo r t h e in c r e a s e o f t h e g r o wt h r a t e will b e in c a s e o f m a xim a l va lu e s o f r e lia b ilit ie s . W h e n t h e ¯ r s t M-1 d ia g o n a l e le m e n t s o f o n e d im e n s io n a l r e lia b ilit y m a t r ix a r e ¯ xe d c o r r e s p o n d in g t o t h e c o n d it io n s ( 8 ) -( 9 ) t h e n fr o m Th e o r e m 2 it fo llo ws t h a t t h e r e e xis t s a L A O s e qu e n c e o f t e s t s '¤, t h e e le m e n t s E ( '¤ ) = fE¤ljmg o f o n e d im e n s io n a l r e lia b ilit y m a t r ix o f wh ic h a r e d e ¯ n e d in ( 4 ) { ( 7 ) wit h m a xim a l va lu e s . Th e c o m p o u n d t e s t '(N) fo r K s t o c ks c a n b e r e p r e s e n t e d a s a c o lle c t io n o f K in d ivid u a l t e s t s ' (N) 1 , ' (N ) 2 , ..., ' (N ) K fo r e a c h o f K s t o c ks [1 2 ], t h e n t h e in ¯ n it e c o m p o u n d t e s t ' is a c o lle c t io n o f in ¯ n it e t e s t s '1, '2,..., 'K : B y t h e L e m m a fr o m [1 2 ] if e le m e n t s Elijmi ( ' i ) , mi; li = 1 ; M , i = 1 ; K; a r e s t r ic t ly p o s it ive , t h e n fo r ' = ( '1; '2; :::; 'K ) El1;l2;:::;lKjm1;m2;:::;mK ( ') = X i=1;K: mi 6=li Elijmi ( 'i ) : S in c e t h e e le m e n t s E¤lijmi ( 'i ) a r e m a xim a l, t h e r e fo r e t h e s u m E ¤ l1;l2;:::;lKjm1;m2;:::;mK ( ') will a ls o b e m a xim a l. T heor em is pr oved. Th e fo llo win g e xa m p le illu s t r a t e s t h e r e s u lt o f t h e Th e o r e m 3 . E xample: Co n s id e r t h e s e t X = f 1 ; 2 g a n d t wo P D s G1 = f 1 =2 ; 1 =2 g a n d G2 = f 1 = 3 ; 2 = 3 g d e ¯ n e d o n X : Co r o lla r y 1 g ive s t h e fo llo win g b o u n d s : ¢ W = ¢ W ( G1 k G2 ) · D ( G1kG2 ) ¼ 0 :0 5 8 8 9 a n d ¢ W = ¢ W ( G2 k G1 ) · D ( G2kG1 ) ¼ 0 :0 5 6 6 3 : A p p lyin g Th e o r e m 3 we s h a ll im p r o ve t h e b o u n d s . Fo r t wo h yp o t h e s is we c a n t a ke E1j1 = 0 :0 5 : L e t Q = fq1; q2g b e t h e t yp e o f t h e ve c t o r x 2 X N ; wh e r e q1 = N ( 1 jx ) =N a n d q2 = N ( 2 jx ) =N: Fig. 1. q log 2q + (1 ¡ q) log 2(1 ¡ q) 2 8 On Application of Optimal Multihypothesis Tests for the Bounds Construction of Stock Market Fig. 2. q log 3q + (1 ¡ q) log( 3 2 (1 ¡ q)) W e n e e d t o c a lc u la t e ( 5 ) a n d ( 6 ) E¤1j2 = in f D(QjjG1)·E1j1 D ( QjjG2 ) = in f q1 log 2q1+q2 log 2q2·E1j1 ( q1 lo g 3 q1 + q2 lo g ( 3 2 q2 ) ) a n d E¤2j1 = in f D(QjjG1)>E1j1 D ( QjjG1 ) = in f q1 log 2q1+q2 log 2q2>E1j1 ( q1 lo g 2 q1 + q2 lo g ( 2 q2 ) ) : Ta kin g in t o a c c o u n t t h a t q1 + q2 = 1 ; fr o m t h e e xp r e s s io n q1 lo g 2 q1 + q2 lo g 2 q2 = 0 : 0 5 we o b t a in t h e e qu a t io n q lo g 2 q + ( 1 ¡ q ) lo g 2 ( 1 ¡ q ) = 0 : 0 5 : Th e a p p r o xim a t e s o lu t io n s o f t h is e qu a t io n a r e q¡ ¼ 0 : 3 4 3 2 2 a n d q¡ ¼ 0 : 6 5 6 7 8 : In Fig . 1 a n d Fig . 2 t h e g r a p h s o f t h e fu n c t io n s q lo g 2 q +( 1 ¡q ) lo g 2 ( 1 ¡q ) a n d q lo g 3 q+( 1 ¡q ) lo g ( 3 2 ( 1 ¡q ) ) a r e r e p r e s e n t e d . Th e s o lu t io n o f t h e in e qu a lit y q lo g 2 q + ( 1 ¡ q ) lo g 2 ( 1 ¡ q ) · E1j1 = 0 : 0 5 is q 2 [q¡; q¡]: Th e r e fo r e , n o w it is e a s y t o s e e t h a t E¤1j2 = in f [q¡;q¡] ( q lo g 3 q + ( 1 ¡ q ) lo g ( 3 2 ( 1 ¡ q ) ) ) ¼ 0 :0 0 0 2 2 : It is a ls o o b vio u s t h a t E¤2j1 = in f [0;q¡)[(q¡;1] ( q lo g 2 q + ( 1 ¡ q ) log ( 2 ( 1 ¡ q ) ) ) = 0 : 0 5 : Th u s , n e w b o u n d s a r e ¢ W ( G1 k G2 ) · 0 : 0 0 8 8 9 ; ¢ W ( G2 k G1 ) · 0 : 0 5 6 4 1 : 4 . Co n c lu s io n Th is p a p e r r e p r e s e n t s t h e a p p lic a t io n o f c o e ± c ie n t s o f t h e r e lia b ilit y m a t r ix o f L A O t e s t s in S t o c k Ma r ke t p o r t fo lio t h e o r y. In ve s t o r s c a n u s e t h e o b t a in e d fo r m u la fo r b o u n d t o e va lu a t e t h e fu t u r e r is ks , m in im a l in c o m e s a n d d o n e c e s s a r y c o r r e c t io n s in c u r r e n t p o r t fo lio . Ch o o s in g s o m e P D fr o m t h e g ive n s e t o f P D s , t h e in ve s t o r will h a ve s o m e e r r o r s . Th e e xis t in g e m p ir ic a l d a t a a llo w t o e s t im a t e s t a t is t ic a lly t h e p r o b a b ilit ie s o f t h o s e e r r o r s . A n d t h e r e lia b ilit y c o e ± c ie n t s o f t h e c o r r e s p o n d in g e r r o r p r o b a b ilit ie s a r e u s e d fo r o b t a in in g o f n e w b o u n d s . It is s h o wn t h a t t h e b o u n d s c a n b e m in im iz e d u s in g L A O t e s t s . Fixin g va lu e s E. Haroutunian, A. Martirosyan, A. Yessayan 2 9 fo r d ia g o n a l e le m e n t s o f r e lia b ilit y m a t r ix t h e L A O t e s t a llo ws t o o b t a in m a xim a l va lu e s fo r a ll o t h e r e le m e n t s wh ic h e n a b le s o b t a in in g o f le s s e r b o u n d s fo r in c r e a s e o f g r o wt h r a t e o f t h e s t o c k m a r ke t . Th e d e r ive d b o u n d c a n b e e ®e c t ive in m o d e lin g o f s t o c k m a r ke t . E va lu a t in g wit h n e w b o u n d t h e in ve s t o r h a vin g h is t o r ic a l d a t a c a n m in im iz e h is lo s s e s m o r e t h a n t h e in ve s t o r wit h o u t u s in g t h e h is t o r ic a l d a t a . A c kn o wle d g e m e n t Th is wo r k wa s s u p p o r t e d in p a r t b y S CS o f ME S o f R A u n d e r Th e m a t ic P r o g r a m N o S CS 1 3 { 1 A 2 9 5 . Refer ences [1 ] T. M. Co ve r a n d J. A . Th o m a s , E lements of Information Theory, S e c o n d E d it io n , N e w Je r s e y, 2 0 0 6 . [2 ] T. M. Co ve r , \ A n a lg o r it h m fo r m a xim iz in g e xp e c t e d lo g in ve s t m e n t r e t u r n " , IE E E Transections on Information Theory, vo l. IT { 3 0 , n o . 2 , p p . 3 6 9 { 3 7 3 , Ma r c h 1 9 8 4 . [3 ] A . R . B a r r o n a n d T. M. Co ve r , \ A b o u n d o n t h e ¯ n a n c ia l va lu e o f in fo r m a t io n " , IE E E Transections on Information Theory, vo l. 3 4 , n o . 5 , p p . 1 0 9 7 { 1 1 0 0 , 1 9 8 8 . [4 ] E . E r kip a n d T. M. Co ve r , \ Th e e ± c ie n c y o f in ve s t m e n t in fo r m a t io n " , IE E E Transec- tions on Information Theory, vo l. 4 4 , n o . 3 , p p . 1 0 2 6 { 1 0 4 0 , 1 9 9 8 . [5 ] E . Or d e n t lic h a n d T. M. Co ve r , \ Th e c o s t o f a c h ie vin g t h e b e s t p o r t fo lio in h in d s ig h t " , M athematics of Operations R esearch, vo l. 2 3 , n o . 4 , p p . 9 6 0 { 9 8 2 , 1 9 9 8 . [6 ] G. N . Iye n g a r a n d T. M. Co ve r , \ Gr o wt h o p t im a l in ve s t m e n t in h o r s e r a c e m a r ke t s wit h c o s t s " , IE E E Transections on Information Theory, vo l. 4 6 , n o . 7 , p p . 2 6 7 5 { 2 6 8 3 , 2 0 0 0 . [7 ] P . H . A lg o e t a n d T. M. Co ve r , \ A s ym p t o t ic o p t im a lit y a n d a s ym p t o t ic e qu ip a r t it io n p r o p e r t ie s o f lo g { o p t im a l in ve s t m e n t " , The Annals of P robability, vo l. 1 6 , n o . 2 , p p . 8 7 6 { 8 9 8 , 1 9 8 8 . [8 ] R . B e ll a n d T. M. Co ve r , \ Ga m e { t h e o r e t ic o p t im a l p o r t fo lio s " , M anagment Science, vo l. 3 4 , n o . 6 , p p . 7 2 4 { 7 3 3 , 1 9 8 8 . [9 ] E . H a r o u t u n ia n , M. H a r o u t u n ia n a n d A . H a r u t yu n ya n , \ R e lia b ilit y c r it e r ia in in - fo r m a t io n t h e o r y a n d in s t a t is t ic a l h yp o t h e s is t e s t in g " , F oundations and Trends in Communications and Information Theory, vo l. 4 , n o . 2 , p p . 9 7 -2 6 3 , 2 0 0 8 . [1 0 ] E . H a r o u t u n ia n , \ L o g a r it h m ic a lly a s ym p t o t ic a ly o p t im a l t e s t in g o f m u lt ip le s t a t is t ic a l h yp o t h e s e s " , P roblems of Control and Information Theory, vo l. 1 9 , n o . 5 -6 , p p . 4 1 3 -4 2 1 , 1 9 9 0 . [1 1 ] A . R . Ma r t ir o s ya n , \ N e w b o u n d s c o n s t r u c t io n b y m e a n s o f r e lia b ilit ie s fo r t h e in c r e a s e o f g r o wt h r a t e o f s t o c k" , P roceedings of International Conference CSIT 2011, p p . 1 8 6 { 1 8 9 , Y e r e va n , 2 0 1 1 . [1 2 ] E . H a r o u t u n ia n a n d P . H a ko b ya n , \ Mu lt ip le h yp o t h e s is L A O t e s t in g fo r m a n y in d e - p e n d e n t o b je c t s " , Scholarly R esearch E xchange, 2 0 0 9 . [1 3 ] R . A h ls we d e a n d E . H a r o u t u n ia n , \ On lo g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f h yp o t h e s e s a n d id e n t ī c a t io n " , Information Transfer and Combinatorics, L ecture 3 0 On Application of Optimal Multihypothesis Tests for the Bounds Construction of Stock Market Notes in Computer Science, vo l. 4 1 2 3 , p p . 5 5 3 { 5 7 1 , S p r in g e r , N e w Y o r k, N Y , U S A , 2 0 0 6 . Submitted 16.08.2013, accepted 01.10.2013. ²ñÅ»ÃÕûñÇ ßáõϳÛÇ Ù»Í³óÙ³Ý ³ñ³·áõÃÛ³Ý ³×Ç ·Ý³Ñ³ï³Ï³ÝÇ Ï³éáõóÙ³ÝÁ µ³½Ù³ÏÇ í³ñϳÍÝ»ñÇ Ýϳïٳٵ ûåïÇÙ³É ï»ëï»ñÇ ÏÇñ³éáõÃÛ³Ý Ù³ëÇÝ º. гñáõÃÛáõÝÛ³Ý, ². سñïÇñáëÛ³Ý ¨ ². ºë³Û³Ý ²Ù÷á÷áõÙ úåïÇÙ³É ï»ëï»ñÇ Ñáõë³ÉÇáõÃÛáõÝÝ»ñÇ Ù³ïñÇóÇ ÏÇñ³éٳٵ ëï³óí³Í ¿ ëË³É Ñ³í³Ý³Ï³Ý³ÛÇÝ µ³ßËÙ³Ý ÏÇñ³éÙ³Ý ¹»åùáõÙ ³ñÅ»ÃÕûñÇ ßáõϳÛÇ ïáÏáë³ÛÇÝ ³×Ç Ýáñ ·Ý³Ñ³ï³Ï³Ý: Î ïðèìåíåíèè îïòèìàëüíûõ òåñòîâ îòíîñèòåëüíî ìíîãèõ ãèïîòåç äëÿ ïîñòðîåíèÿ îöåíêè óâåëè÷åíèÿ ñêîðîñòè ðîñòà ðûíêà öåííûõ áóìàã Å. Àðóòþíÿí, À. Ìàðòèðîñÿí è À. Åñàÿí Àííîòàöèÿ Ïóòåì èñïîëüçîâàíèÿ ìàòðèöû íàäåæíîñòåé îïòèìàëüíûõ òåñòîâ ïîëó÷åíà íîâàÿ îöåíêà óâåëè÷åíèÿ ñêîðîñòè ðîñòà ðûíêà öåííûõ áóìàã ïðè ïðèìåíåíèè îøèáî÷íîãî ðàñïðåäåëåíèÿ âåðîÿòíîñòåé.