D:\sbornik\...\333.DVI Mathematical Problems of Computer Science 33, 35{40, 2010. A N ote on Shor t P aths in Or iented Gr aphs S a m ve l K h . D a r b in ya n a n d Is ka n d a r A . K a r a p e t ya n Institute for Informatics and Automation Problems of NAS of RA e-mail: samdarbin@ipia.sci.am, isko@ipia.sci.am Abstract Let G be an oriented graph of order p ¸ 3 and minimum semi-degrees at least [p=2] ¡ k for a positive integer k. For a subset C of vertices G, we obtain su±cient conditions implying that for any pair of distinct vertices x; y 2 V (G) ¡ C there is a path from x to y of length less than a given integer which does not contain the vertices of C. Refer ences [1 ] J. B a n g -Je n s e n a n d G. Gu t in , D ig r a p h s . Th e o r y. A lg o r it h m s a n d A p p lic a t io n s , S p r in g e r , 2 0 0 0 . [2 ] J. D . U llm a n , Co m p u t a t io n a l A s p e c t s o f V L S I,Co m p u t e r S c ie n c e P r e s s , 1 9 8 4 . àõÕÕáñ¹í³Í ·ñ³ýÝ»ñáõ٠ϳñ× ×³Ý³å³ñÑÝ»ñÇ Ù³ëÇÝ ê. ¸³ñµÇÝÛ³Ý ¨ Æ. γñ³å»ïÛ³Ý ²Ù÷á÷áõÙ ¸Çóáõù G-Ý p- ·³·³Ã³ÝÇ (p ¸ 3 ) áõÕÕáñ¹í³Í ·ñ³ý ¿, áñÇ ·³·³ÃÝ»ñÇ ÏÇë³³ëïÇ׳ÝÝ»ñÁ ÷áùñ ã»Ý [p= 2 ] ¡ k ÃíÇó (áñï»Õ k ¸ 1 ¨ ³ÙµáÕç ÃÇí ¿), ¨ ¹Çóáõù C-Ý G ·ñ³ýÇ ·³·³ÃÝ»ñÇ áñ¨> »Ýóµ³½ÙáõÃÛáõÝ ¿: Ü»ñϳ ³ß˳ï³ÝùáõÙ ëï³óí³Í »Ý µ³í³ñ³ñ å³ÛÙ³ÝÝ»ñ, áñáÝó ¹»åùáõÙ G ·ñ³ýÇ ó³Ýϳó³Í »ñÏáõ ï³ñµ»ñ x ¨ y ·³·³ÃÝ»ñÇ Ñ³Ù³ñ ·áÛáõÃÛáõÝ áõÝÇ C µ³½ÙáõÃÛ³Ý ·³·³ÃÝ»ñáí ã³ÝóÝáÕ ¨ ïñí³Í ÃíÇó ÷áùñ »ñϳñáõÃÛ³Ùµ x -Çó ¹áõñë »ÏáÕ ¨ y-Á ÙïÝáÕ ÏáÕÙÝáñáßí³Í ׳ݳå³ñÑ: 3 5