D:\sbornik\...\Aram_13\Aram.DVI Mathematical Problems of Computer Science 33, 95{101, 2010. On Reliability Appr oach to M ultiple H ypotheses T esting and I denti¯cation of P r obability Distr ibutions of T wo Stochastically Coupled Objects E vg u e n i H a r o u t u n ia n a n d A r a m Y e s s a ya n Institute for Informatics and Automation Problems of NAS of RA evhar@ipia.sci.am Abstract This paper is devoted to logarithmically asymptotically optimal hypotheses testing and identi¯cation for a model consisting of two stochastically related objects. It is supposed that L1 possible probability distributions are known for the ¯rst object and the second object is distributed according to one of L1 £ L2 given conditional distri- butions depending on the distribution index and the current observed state of the ¯rst object. The matrix of interdependencies of all possible pairs of the error probability exponents in asymptotically optimal tests of distributions of both objects is studied. The identi¯cation of the distributions of two objects gives an answer to the question whether r1-th and r2-th distributions occurred, or not on the ¯rst and the second objects, correspondingly. Refer ences [1 ] E . A . H a r o u t u n ia n , \ L o g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f m u lt ip le s t a t is t i- c a l h yp o t h e s e s " , P roblems of Control and Information Theory, vo l. 1 9 ( 5 -6 ) , p p . 4 1 3 { 4 2 1 , 1 9 9 0 . [2 ] R . F. A h ls we d e a n d E . A . H a r o u t u n ia n , \ On lo g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f h yp o t h e s e s a n d id e n t ī c a t io n " . L e c t u r e N o t e s in Co m p u t e r S c ie n c e , vo l. 4 1 2 3 , \ Ge n e r a l Th e o r y o f In fo r m a t io n Tr a n s fe r a n d Co m b in a t o r ic s " , S p r in g e r , p p . 4 6 2 { 4 7 8 , 2 0 0 6 . [3 ] E . A . H a r o u t u n ia n , \ R e lia b ilit y in m u lt ip le h yp o t h e s e s t e s t in g a n d id e n t ī c a t io n " . P r o - c e e d in g s o f t h e N A TO A S I, Y e r e va n 2 0 0 3 , N A TO S c ie n c e S e r ie s , III: Co m p u t e r a n d S ys t e m s S c ie n c e s , vo l. 1 9 8 , IOS P r e s s , p p . 1 8 9 { 2 0 1 , 2 0 0 5 . [4 ] E . A . H a r o u t u n ia n a n d P . M. H a ko b ya n , \ On L A O t e s t in g o f m u lt ip le h yp o t h e s e s fo r p a ir o f o b je c t s " , M athematical P roblems of Computer Science, vo l. X X V , p p . 9 2 { 1 0 0 , 2 0 0 6 . [5 ] E . A . H a r o u t u n ia n a n d P . M. H a ko b ya n , \ On id e n t ī c a t io n o f d is t r ib u t io n s o f t wo in d e p e n d e n t o b je c t s " , M athematical P roblems of Computer Science, vo l. X X V III, p p . 1 1 4 { 1 1 9 , 2 0 0 7 . [6 ] E . A . H a r o u t u n ia n a n d P . M. H a ko b ya n , \ Mu lt ip le h yp o t h e s e s L A O t e s t in g fo r m a n y in d e p e n d e n t o b je c t " , International journal \Scholarly R esearch E xchange", 1 5 p p , 2 0 0 9 . 9 5 9 6 On Reliability Approach to Hypotheses Testing and Idententi¯cation of Distributions of Two Coupled Objects [7 ] E . A . H a r o u t u n ia n a n d A . O. Y e s s a ya n , \ On h yp o t h e s e s t e s t in g fo r t wo d i®e r e n t ly d is t r ib u t e d o b je c t s " . M athematical P roblems of Computer Science, vo l. X X V I, p p . 9 1 { 9 6 , 2 0 0 6 . [8 ] E . A . H a r o u t u n ia n a n d A . O. Y e s s a ya n , \ On lo g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l h yp o t h e s is t e s t in g fo r p a ir o f s t a t is t ic a lly d e p e n d e n t o b je c t s " , M athematical P roblems of Computer Science, vo l. X X IX , p p . 9 7 { 1 0 3 , 2 0 0 7 . [9 ] E . A . H a r o u t u n ia n a n d N . A . Gr ig o r ya n , \ On r e lia b ilit y a p p r o a c h fo r t e s t in g o f m a n y d is t r ib u t io n s fo r p a ir o f Ma r ko v c h a in s " , M athematical P roblems of Computer Science, vo l. X X IX , p p . 8 9 { 9 6 , 2 0 0 7 . [1 0 ] A . O. Y e s s a ya n , \ On r e lia b ilit y a p p r o a c h t o id e n t i¯ c a t io n o f p r o b a b ilit y d is t r ib u t io n s o f t wo s t a t is t ic a lly d e p e n d e n t o b je c t s " , M athematical P roblems of Computer Science, vo l. X X X II, p p . 6 5 { 6 9 , 2 0 0 9 . [1 1 ] E . A . H a r o u t u n ia n a n d L . N a va e i, \ On o p t im a l id e n t ī c a t io n o f Ma r ko v c h a in d is t r i- b u t io n s u b je c t t o t h e r e lia b ilit y c r it e r ia " , M athematical P roblems of Computer Science, vo l. X X X II, p p . 5 6 { 6 4 , 2 0 0 9 . [1 2 ] I. Cs is z ¶a r a n d J. K Äo r n e r , Information theory: Coding Theorems for D iscrete M emoryless Systems. N e w Y o r k: A c a d e m ic P r e s s , 1 9 8 1 ( R u s s ia n t r a n s la t io n , Mir , Mo s c o w, 1 9 8 5 ) . [1 3 ] E . A . H a r o u t u n ia n , M. E . H a r o u t u n ia n , a n d A . N . H a r u t yu n ya n , \ R e lia b ilit y c r it e r ia in in fo r m a t io n t h e o r y a n d in s t a t is t ic a l h yp o t h e s e s t e s t in g " , F oundations and Trends in Communications and Information Theory, vo l. 4 , n o . 2 -3 , 2 0 0 8 . êïá˳ëïÇÏáñ»Ý ϳËÛ³É ûµÛ»ÏïÝ»ñÇ Ñ³í³Ý³Ï³Ý³ÛÇÝ µ³ßËáõÙÝ»ñÇ Ýϳïٳٵ í³ñϳÍÝ»ñÇ ëïáõ·Ù³Ý ¨ ÝáõÛݳϳݳóÙ³Ý Ñáõë³ÉÇáõÃÛ³Ý Ùáï»óÙ³Ý Ù³ëÇÝ º. ². гñáõÃÛáõÝÛ³Ý ¨ ². ú. ºë³Û³Ý ²Ù÷á÷áõÙ ¸Çï³ñÏí³Í »Ý ëïá˳ëïÇÏáñ»Ý ϳËÛ³É »ñÏáõ ûµÛ»ÏïÝ»ñÇ Ýϳïٳٵ í³ñϳÍÝ»ñÇ ëïáõ·Ù³Ý ¨ ÝáõÛݳϳݳóÙ³Ý ËݹÇñÝ»ñÁ: ²é³çÇÝ ûµÛ»ÏïÁ ϳñáÕ ¿ µ³ßËí³Í ÉÇÝ»É ïñí³Í ѳí³Ý³Ï³Ý³ÛÇÝ µ³ßËáõÙÝ»ñÇó Ù»Ïáí, ÇëÏ »ñÏñáñ¹Áª ϳËí³Í ³é³çÇÝÇó, ïñí³Í å³ÛÙ³Ý³Ï³Ý Ñ³í³Ý³Ï³Ý³ÛÇÝ µ³ßËáõÙÝ»ñÇó Ù»Ïáí: àõëáõÙݳëÇñí»É ¿ í³ñϳÍÝ»ñÇ ûåïÇÙ³É ï»ëï³íáñÙ³Ý ¹»åùáõÙ »ñÏáõ ûµÛ»ÏïÝ»ñÇ Ýϳïٳٵ ë˳ÉÝ»ñÇ Ñ³í³Ý³Ï³ÝáõÃÛáõÝÝ»ñÇ óáõóÇãÝ»ñÇ (Ñáõë³ÉÇáõÃÛáõÝÝ»ñÇ) ÷áËϳËí³ÍáõÃÛáõÝÁ ¨ ëï³óí»É ¿ »ñÏáõ ëïá˳ëïÇÏáñ»Ý ϳËÛ³É ûµÛ»ÏïÝ»ñÇ Ñ³í³Ý³Ï³Ý³ÛÇÝ µ³ßËáõÙÝ»ñÇ ³ëÇÙåïáïáñ»Ý ûåïÇÙ³É ÝáõÛݳϳݳóÙ³Ý ËݹñÇ ÉáõÍáõÙÁ: