Microsoft Word - tpel.doc Mathematical Problems of Computer Science 33, 144--149, 2010. 144 Construction of Explicit Irreducible Polynomials over 2F in Cluster Computational Environment Ofelya Manukyan and Melsik Kyuregyan Institute for Informatics and Automation Problems of NAS of RA e-mail: manofa81@yahoo.com, melsik@ipia.sci.am Abstract This paper describes a method for constructing families of explicit irreducible polynomials over 2F . The proposed method allows construction of explicit polynomials of higher degree over 2F from a given sequence of primitive polynomials. A computational algorithm has been developed and implemented on base of this method. The program is realized in the most effective way possible in cluster computational environment. Allocation and distribution of memory resources have been implemented in a careful manner, since data size increases drastically with increasing of the amount of computations required. Program paralleling is performed using data paralleling, i.e. data is distributing among all processors, which ran the same program and each of which builds the subsequent irreducible polynomial, and finally a sequence of all the irreducible polynomials in explicit form is obtained. Moreover, the program also searches for the polynomial with the lowest possible weight among of all the polynomials of the same degree. References [1] M. Kyuregyan, “Recurrent methods for constructing irreducible polynomials over )2( sGF ”, Finite Fields and Their Applications 8, pp. 52-68, 2002. [2] R. Lidl and H. Niederreiter, Finite Fields , Cambridge University Press 1987. [3] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone and T. Yaghoobian, “Applications of finite fields”, Kluwer Academic Publishers, Boston, Dordrecht, Lancaster, 1993. O. Manukyan, M. Kyuregyan 145 2F í»ñç³íáñ ¹³ßïÇ íñ³ ³Ýí»ñ³Í»ÉÇ µ³½Ù³Ý¹³ÙÝ»ñÇ µ³ó³Ñ³Ûï ï»ëùáí ϳéáõóÙ³Ý »Õ³Ý³Ï Ïɳëï»ñ³ÛÇÝ Ñ³ßíáÕ³Ï³Ý Ñ³Ù³Ï³ñ·áõÙ ú. سÝáõÏÛ³Ý ¨ Ø. ÎÛáõñ»ÕÛ³Ý ²Ù÷á÷áõÙ ²ß˳ï³ÝùáõÙ Ýϳñ³·ñí³Í ¿ 2F í»ñç³íáñ ¹³ßïÇ íñ³ ³Ýí»ñ³Í»ÉÇ µ³½Ù³Ý¹³ÙÝ»ñÇ µ³ó³Ñ³Ûï ï»ëùáí ϳéáõóÙ³Ý ÙÇ »Õ³Ý³Ï, áñÁ Ñݳñ³íáñÇÝë ¿ý»ÏïÇíáñ»Ý Ùß³Ïí»É ¨ Çñ³Ï³Ý³óí»É ¿ Ïɳëï»ñ³ÛÇÝ Ñ³ßíáÕ³Ï³Ý Ñ³Ù³Ï³ñ·áõÙ: ÐÇßáÕáõÃÛ³Ý é»ëáõñëÝ»ñÇ µ³ßËáõÙÁ` ÑÇßáÕáõÃÛ³Ý Ñ³ïϳóáõÙÝ áõ ³½³ïáõÙÁ ϳï³ñí»É »Ý ËݳÛáÕ³µ³ñ, ù³ÝÇ áñ ѳßí³ñÏÝ»ñÇ ÁÝóóùáõÙ ïíÛ³ÉÝ»ñÇ »ñϳñáõÃÛáõÝÝ»ñÁ ß³ï ³ñ³· ³×áõÙ »Ý: Îɳëï»ñ³ÛÇÝ Ñ³ßíáÕ³Ï³Ý Ñ³Ù³Ï³ñ·áõÙ Íñ³·ñÇ ½áõ·³Ñ»é³óáõÙÁ ϳï³ñí»É ¿ Áëï ïíÛ³ÉÝ»ñÇ, ³ÛëÇÝùÝ ïíÛ³ÉÝ»ñÁ µ³ßËíáõÙ »Ý åñáó»ëáñÝ»ñÇ ÙÇç¨, µáÉáñ åñáó»ëáñÝ»ñÁ ³ß˳ïáõÙ »Ý ÙǨÝáõÛÝ Íñ³·ñáí ¨ Ûáõñ³ù³ÝãÛáõñÁ ϳéáõóáõÙ ¿ Ñ»ñÃ³Ï³Ý ³Ýí»ñ³Í»ÉÇ µ³½Ù³Ý¹³ÙÁ: ²ñ¹ÛáõÝùáõÙ ëï³ÝáõÙ »Ýù ³Ýí»ñ³Í»ÉÇ µ³½Ù³Ý¹³ÙÝ»ñÇ Ñ³çáñ¹³Ï³ÝáõÃÛáõÝ ¨ µ³óÇ ³Û¹ ÷ÝïñáõÙ »Ýù ÙǨÝáõÛÝ ³ëïÇ׳ÝÇ Ñݳñ³íáñÇÝë ÷áùñ ÏßÇé áõÝ»óáÕ ³Ýí»ñ³Í»ÉÇ µ³½Ù³Ý¹³ÙÁ: