Microsoft Word - AMIRRANJABAR_22.doc Mathematical Problems of Computer Science 33, 172--182, 2010. 172 Estimate for the Arithmetical Cost of an Algebraic Multigrid Preconditioner Amir Ranjbar Yerevan State University, Islamic Azad University of Minoodasht (Iran) ranjbar@minoodasht.ac.ir Abstract A multigrid preconditioner for the matrix arising in finite element approximation of model elliptic boundary value problem is proposed. Hierarchical triangular grids with bisection form the basis of multigrid construction. The main purpose of the paper is to evaluate the arithmetical cost of a preconditioner step. References 1. Yu.A. Kuznetsov, “Algebraic multigrid domain decomposition methods”, Sov. J. Numer. Anal. Math. Modelling, vol.4, No.5, pp. 351-379, 1989. 2. Yu.R. Hakopian and Yu.A. Kuznetsov, “Algebraic multigrid/substructuring preconditioners on triangular grids”, Sov. J. Numer. Anal. Math. Modelling, vol.6, No.6, pp. 453-483, 1991. 3. O. Axelsson, Yu.R. Hakopian and Yu.A. Kuznetsov, “Multilevel preconditioning for perturbed finite element matrices”, IMA J. Numer. Anal., vol.17, pp. 125-149, 1997. 4. Yu.R. Hakopian, “Algebraic multilevel/substructuring preconditioner in finite element method with piecewise quadratic approximation”, “Mathematical Problems of Computer Science”, vol.21, pp. 164-180, 2000. 5. Yu.R. Hakopian, “Algebraic multilevel preconditioners for third order finite element approximation”, Algebra, Geometry & their Applications (Seminar Proceedings), Yerevan State University, Armenia, vol.1, pp. 20-39, 2001. 6. Yu.R. Hakopian and A.S. Harutyunyan, “Two-level preconditioners for serendipity finite element matrices”, Linear Algebra Appl., vol.13, No.10, pp. 847-864, 2006. 7. G. Strang and G. Fix, “An Analysis of the Finite Element Method”, Prentice-Hall Englewood Cliffs, N.J., 1973. 8. O.C. Zenkiewich and K. Morgan, “Finite Elements and Approximation”, Wiley, NY, 1983. 9. O. Axelsson and P.S.Vassilevski, “Algebraic multilevel preconditioning methods”,I, Numer. Math., vol. 56, pp. 157-177, 1989. 10. O. Axelsson. Iterative Solution Methods, Cambridge University Press, 1994. A.Ranjbar 173 гÝñ³Ñ³ßí³Ï³Ý µ³½Ù³ó³Ýó³ÛÇÝ í»ñ³å³ÛٳݳíáñÇãÇ Ãí³µ³Ý³Ï³Ý ·ÝÇ ·Ý³Ñ³ï³Ï³ÝÁ ². è³Ýçµ³ñ ²Ù÷á÷áõÙ ²ß˳ï³Ýùáõ٠ϳéáõóíáõÙ ¿ µ³½Ù³ó³Ýó³ÛÇÝ í»ñ³å³ÛٳݳíáñÇã ÙṻɳÛÇÝ ¿ÉÇåï³Ï³Ý »½ñ³ÛÇÝ ËݹñÇ í»ñç³íáñ ï³ññ³ÛÇÝ Ùáï³ñÏÙ³Ý ³ñ¹ÛáõÝùáõÙ ëï³óíáÕ Ù³ïñÇóÇ Ñ³Ù³ñ: ´³½Ù³ó³Ýó³ÛÇÝ Ï³éáõóí³ÍùÇ ÑÇÙùáõÙ ÁÝÏ³Í »Ý ÑÇ»ñ³ñËÇ³Ï³Ý »é³ÝÏÛáõÝ ó³Ýó»ñ: Ðá¹í³ÍÇ ÑÇÙÝ³Ï³Ý Ýå³ï³ÏÝ ¿ ·Ý³Ñ³ï»É í»ñ³å³ÛٳݳíáñÙ³Ý ù³ÛÉÇ Ãí³µ³Ý³Ï³Ý ·ÇÝÁ: