Microsoft Word - Armen Khachaturyan_23.doc Mathematical Problems of Computer Science 33, 183--186, 2010. 183 The Optimal Permissible Placement by the Height of the Transitive Oriented Treecontaining One Vertex of Branching Armen Khachaturyan Yerevan State University, faculty of Informatics and Applied Mathemathics e-mail armenarmenian@mail.ru Abstract In this paper we consider the optimal permissible placement by the height of the following type of transitive oriented graphs (the height of the vertex is the number of the arcs passing through the vertex): the graph consists of chains of quantity 2s branching after the end of the chain. The problem was solved by the algorithm of ss log complexity. References 1. В. А. Евстигнеев, “Применение теории графов в программировании”,1985. 2. А. В. Петросян, С. Е. Маркосян, Ю. Г. Шукурян, “Математические вопросы автоматизации и проектирования ЭВМ”.Ереван, 1977. 3. Г. Г. Геолецян, “Плоское размещение вершин дерева на линии с минимизацией ширины.” ДАН Апм ССР, вып. 56, Но-4, стр.202-207, 1973 4. M.R. Garey, R.L. Graham, D.S. Johnson, and D.E. Knuth “Complexity results for bandwidth minimization”, SIAM J. Appl. Math. 34, pp. 477-495, 1978. 5. M.R. Garey, D.S. Johnson, and L. Stockmeyer “Some simplified NP-complete graph problems”, Theor. Comput. Sci.1, pp. 237-267, 1976. 6. Ch. H. Papadimitriou, “The NP-copleteness of the bandwidth minimization problem”, Computing 16, pp.263-270, 1976. 7. D. Adolphson, and T. C. Hu, “Optimal linear ordering”, SIAM J. Appl. Math., vol.25,No.3, pp. 403- 423, 1973. 184 The Optimal Permissible Placement Ø»Ï ×ÛáõÕ³íáñÙ³Ý ·³·³Ã å³ñáõݳÏáÕ ïñ³Ý½ÇïÇí ûñÇ»Ýï³óí³Í ͳéÇ ûåïÇÙ³É ÃáõÛɳïñ»ÉÇ ï»Õ³¹ñáõÙÝ Áëï µ³ñÓñáõÃÛ³Ý ². ʳã³ïáõñÛ³Ý ²Ù÷á÷áõÙ ²ß˳ï³ÝùáõÙ ß³ñ³¹ñí³Í »Ý Ñ»ï¨Û³É ïÇåÇ ïñ³Ý½ÇïÇí ûñÇ»Ýï³óí³Í ·ñ³ýÝ»ñÇ ûåïÇÙ³É ÃáõÛɳïñ»ÉÇ Ñ³Ù³ñ³Ï³ÉáõÙÝ Áëï µ³ñÓñáõÃÛ³Ý (·³·³ÃÇ µ³ñÓñáõÃÛáõÝ ³ë»Éáí ѳëϳÝáõÙ »Ýù ·³·³ÃÇ íñ³Ûáí ³ÝóÝáÕ ³Õ»ÕÝ»ñÇ ù³Ý³ÏÁ)` ·ñ³ýÁ ϳ½Ùí³Í ¿ ßÕóÛÇó ¨ ßÕóÛÇ í»ñçÇó ×ÛáõÕ³íáñíáÕ 2s ù³Ý³ÏáõÃÛ³Ùµ ßÕóݻñÇó: ÊݹÇñÁ ÉáõÍí»É ¿ ss log µ³ñ¹áõÃÛ³Ý ³É·áñÇÃÙáí áñï»Õ s -Á ¹Çï³ñÏí³Í ·ñ³ýÇ ×ÛáõÕ³íáñíáÕ ßÕóݻñÇ ù³Ý³ÏÝ ¿ :