1_Mikayel_Evoyan.DVI Mathematical Problems of Computer Science 39, 5{12, 2013. On k-Switching of M appings on Finite Fields Mika ye l G. E vo ya n 1, Go h a r M. K yu r e g ya n 2 a n d Me ls ik K . K yu r e g ya n 1 Institute for Informatics and Automation Problems of NAS RA1 Institute of Algebra and Geometry, Otto-von-Guericke University Magdeburg2 e-mail: michael.evoyan@gmail.com, gohar.kyureghyan@ovgu.de, melsik@ipia.sci.am Abstract The switching construction was used in several recent papers to construct special mappings on ¯nite ¯elds. In this paper we generalize the concept of switching to a k-switching with 1 · k · n. We present some general properties of k-switching and describe permutations produced using k-switching. Keywords: Mappings of ¯nite ¯elds, switching, permutation. 1 . In t r o d u c t io n L e t F : Fqn ! Fqn a n d ( °1; : : : ; °n ) b e a n Fq-b a s is o f Fqn . Th e u n iqu e ly d e t e r m in e d fu n c t io n s fi : Fqn ! Fq; 1 · i · n; s u c h t h a t F ( x ) = f1 ( x ) ¢ °1 + : : : + fn ( x ) ¢ °n; a r e c a lle d t h e coordinate functions o f F wit h r e s p e c t t o t h e b a s is ( °1; : : : ; °n ) . Th e component functions o f F o ve r t h e s u b ¯ e ld Fq a r e t h e fu n c t io n s T rqn=q ( ®F ( x ) ) wit h ® 2 F¤qn , wh e r e T rqn=q is a t r a c e m a p p in g o f Fqn in t o Fq g ive n b y T rqn=q = x + x q + : : : + xq n¡1 : Th e s e t o f c o m p o n e n t fu n c t io n s o f a m a p p in g c o in c id e s wit h o n e o f it s c o o r d in a t e fu n c t io n s : P r oposition 1: Any component function over Fq of a mapping F : Fqn ! Fqn is a coordi- nate function with respect to some Fq-basis, and vice versa. P r oof. R e c a ll t h a t a n y b a s is ( °1; : : : ; °n ) h a s a u n iqu e d u a l b a s is ( ¹°1; : : : ; ¹°n ) d e ¯ n e d b y T rqn=q ( °i ¹°j ) = ( 1 if i = j; 0 if i 6= j: fo r a ll 1 · i; j · n. In p a r t ic u la r fo r a n y a 2 Fqn t h e c o e ± c ie n t s ai in t h e lin e a r c o m b in a t io n a = Pn i=1 ai°i a r e g ive n b y ai = T rqn=q ( ¹°ia ) : 5 6 On k-Switching of Mappings on Finite Fields Co n s e qu e n t ly, t h e c o o r d in a t e fu n c t io n fi ( x ) o f F ( x ) wit h r e s p e c t t o ( °1; : : : ; °n ) is t h e c o m - p o n e n t fu n c t io n T rqn=q ( ¹°iF ( x ) ) . On t h e o t h e r h a n d , a c o m p o n e n t fu n c t io n T rqn=q ( ®F ( x) ) is a c o o r d in a t e fu n c t io n o f F ( x ) wit h r e s p e c t t o t h e d u a l b a s is o f a n y b a s is c o n t a in in g ®. A m a p p in g F : Fqn ! Fqn is c a lle d a s wit c h in g o f G : Fqn ! Fqn if t h e r e is a n Fq-b a s is ( °1; : : : ; °n ) s u c h t h a t a ll b u t t h e ¯ r s t c o o r d in a t e fu n c t io n s o f F a n d G a r e e qu a l, i.e . F ( x ) = f1 ( x ) ¢ °1 + : : : + fn ( x) ¢ °n; a n d G ( x ) = g1 ( x ) ¢ °1 + : : : + gn ( x ) ¢ °n; wit h f1 ( x ) 6= g1 ( x ) a n d fi ( x ) = gi ( x ) fo r a ll 2 · i · n. S wit c h in g wa s u s e d t o p r o d u c e in t e r e s t in g c la s s e s o f s p e c ia l m a p p in g s o f ¯ n it e ¯ e ld s in [2 ]{ [8 ]. Co n s t r u c t io n o f b ije c t ive m a p p in g s b y c h a n g in g t wo c o o r d in a t e fu n c t io n s o f t h e id e n t it y m a p p in g we r e s t u d ie d in [5 , 7 ]. In t h is p a p e r we g e n e r a liz e t h e c o n c e p t o f s wit c h in g t o a k-s wit c h in g wit h 1 · k · n a n d d e s c r ib e p e r m u t a t io n s p r o d u c e d u s in g k-s wit c h in g . 2 . k-S wit c h in g De¯nition 1: L et 1 · k · n be an integer. A mapping F : Fqn ! Fqn is called a k- switching of G : Fqn ! Fqn over Fq if k is the minimal integer such that there is an Fq-basis ( °1; : : : ; °n ) with respect to which all but the ¯rst k coordinate functions of F and G are equal, i.e. F ( x ) = f1 ( x ) ¢ °1 + : : : + fn ( x) ¢ °n; and G ( x ) = g1 ( x ) ¢ °1 + : : : + gn ( x ) ¢ °n; with fj ( x ) 6= gj ( x ) for all 1 · j · k and fi ( x ) = gi ( x) for all k + 1 · i · n. N o t e t h a t 1 -s wit c h in g r e d u c e s t o a s wit c h in g d e ¯ n e d a b o ve . Cle a r ly, fo r a n y t wo d i®e r e n t m a p p in g s F a n d G t h e r e is a n in t e g e r 1 · k · n s u c h t h a t F is a k-s wit c h in g o f G. Mo r e o ve r , if F is a k-s wit c h in g o f G, t h e n a ls o G is a k-s wit c h in g o f F . Remar k 1: L et 1 · k < k0 · n. If the mapping F : Fqn ! Fqn is a k-switching of G : Fqn ! Fqn, then there is an Fq-basis of Fqn with respect to which exactly k0 coordinate functions of F and G di®er. Indeed, let F ( x ) = kX i=1 fi ( x) °i + nX i=k+1 ai ( x ) °i; and G( x ) = kX i=1 gi ( x ) °i + nX i=k+1 ai ( x ) °i; with respect to an Fq-basis ( °1; : : : ; °n ) and fi ( x ) 6= gi ( x ) for all 1 · i · k. Then with respect to the Fq-basis ( °1; : : : ; °k¡1; k0X j=k °j; ; °k+1; : : : ; °n ) ; M. Evoyan, G. Kyureghyan and M. Kyureghyan 7 the coordinate functions of F and G are as follows: F ( x) = k¡1X i=1 fi ( x) °i + fk ( x ) 0 @ k0X j=k °j 1 A + k0X i=k+1 ( ai ( x ) ¡ fk ( x ) ) °i + nX i=k0+1 ai ( x ) °i; and G ( x) = k¡1X i=1 gi ( x ) °i + gk ( x ) 0 @ k0X j=k °j 1 A + k0X i=k+1 ( ai ( x) ¡ gk ( x ) ) °i + nX i=k0+1 ai ( x ) °i: In t h e fo llo win g fo r a s u b s e t S µ Fqn we u s e hSi t o d e n o t e t h e Fq-s u b s p a c e s p a n n e d b y S. T heor em 1: L et 1 · k · n and F; G : Fqn ! Fqn. Then the following statements are equivalent: (i) F is a k-switching of G. (ii) The image set of the mapping F ¡ G : x 7! F ( x ) ¡ G( x ) spans a k-dimensional vector space over Fq. P r oof. L e t F : Fqn ! Fqn b e a k-s wit c h in g o f G : Fqn ! Fqn . Th e n t h e r e is a n Fq-b a s is ( °1; : : : ; °n ) o f Fqn s u c h t h a t F ( x ) = kX i=1 fi ( x) °i + nX i=k+1 ai ( x) °i; a n d G( x ) = kX i=1 gi ( x ) °i + nX i=k+1 ai ( x ) °i; wh e r e fi ( x ) 6= gi ( x) fo r a ll 1 · i · k. H e n c e F ( x ) ¡ G( x ) = kX i=1 ( fi ( x) ¡ gi ( x ) ) °i; s h o win g t h a t t h e d im e n s io n l o f hImage ( F ¡ G) i is le s s o r e qu a l t o k. N o w le t ( ±1; : : : ; ±` ) b e a b a s is fo r hImage( F ¡ G ) i, a n d ( ±1; : : : ; ±`; : : : ±n ) a b a s is fo r Fqn . L e t hi; uj : Fqn ! Fq b e s u c h t h a t F ( x ) ¡ G ( x ) = X̀ i=1 hi ( x) ±i; a n d G ( x) = nX i=1 ui ( x ) ±i: Th e n F ( x ) = X̀ i=1 ( ui ( x ) + hi ( x ) ) ±i + nX i=`+1 ui ( x ) ±i; a n d t h u s k · ` b y t h e d e ¯ n it io n o f k-s wit c h in g , c o m p le t in g t h e p r o o f. P r oposition 2: L et 1 · k · n and F : Fqn ! Fqn be a k-switching of G : Fqn ! Fqn : Then F and G have exactly qn¡k ¡ 1 equal component functions over Fq . 8 On k-Switching of Mappings on Finite Fields P r oof. L e t ® 2 Fqn ; ® 6= 0 . Th e n T rqn=q ( ®F ( x ) ) = T rqn=q ( ®G ( x ) ) h o ld s if a n d o n ly if T rqn=q ( ®( F ( x) ¡ G ( x ) ) ) is t h e c o n s t a n t z e r o fu n c t io n , o r , t h e e qu iva le n t , im a g e s e t o f t h e m a p p in g F ¡ G is c o n t a in e d in t h e h yp e r p la n e H® = fy 2 Fqn : T rqn=q ( ®y ) = 0 g. N o t e t h a t Image( F ¡ G) µ H® if a n d o n ly if t h e lin e a r s p a n hImage ( F ¡ G ) i is a s u b s p a c e o f H®. B y Th e o r e m 1 t h e d im e n s io n o f hImage ( F ¡ G ) i is k. H e n c e , t h e r e a r e q n¡k¡1 q¡1 d i®e r e n t h yp e r p la n e s c o n t a in in g hImage ( F ¡ G ) i. To c o m p le t e t h e p r o o f it r e m a in s t o r e c a ll t h a t H® = H®0 if a n d o n ly if ®0 = ® ¢ u wit h a n o n -z e r o u 2 Fq. 3 . k-S wit c h in g o f t h e Id e n t it y Ma p p in g In t h is s e c t io n we c o n s id e r b ije c t ive k-s wit c h in g o f t h e id e n t it y m a p p in g . A s t h e n e xt o b s e r - va t io n s h o ws t h e s t u d y o f k-s wit c h in g o f a n a r b it r a r y p e r m u t a t io n o n Fqn c a n b e r e d u c e d t o o n e o f t h e id e n t it y m a p p in g s . L e t F : Fqn ! Fqn b e a k-s wit c h in g o f G : Fqn ! Fqn , a n d e it h e r F o r G b e a p e r m u t a t io n o n Fqn . W it h o u t lo s s o f g e n e r a lit y, s a y F is a p e r m u t a t io n a n d d e n o t e it s in ve r s e m a p p in g b y F ¡1. Th e n G( x ) = F ( x ) + kX i=0 fi ( x ) ¢ °i; ( 1 ) wit h r e s p e c t t o s o m e b a s is ( °1; : : : ; °n ) . N o t e t h a t ( 1 ) h o ld s if a n d o n ly if G ± F ¡1 ( x ) = x + kX i=0 fi ± F ¡1 ( x) ¢ °i; t h a t is wh e n G ± F ¡1 is a k-s wit c h in g o f t h e id e n t it y m a p p in g . H e n c e , u n d e r s t a n d in g o f t h e b e h a vio u r o f k-s wit c h in g o f t h e id e n t it y m a p p in g is a n im p o r t a n t s t e p fo r t h e g e n e r a l p r o b le m . Th e r e m a in in g p a r t o f t h is s e c t io n is d e vo t e d t o a c la s s o f p e r m u t a t io n s o b t a in e d b y k-s wit c h in g u s in g t h e s o -c a lle d fu n c t io n s wit h a lin e a r t r a n s la t o r . Ou r r e s u lt s g e n e r a liz e s e ve r a l c o n s t r u c t io n s o f p e r m u t a t io n s g ive n in [1 , 3 , 5 , 7 ]. A n o n -z e r o e le m e n t ® 2 Fqn is c a lle d a n a-lin e a r t r a n s la t o r ( o r a-lin e a r s t r u c t u r e , c f. [3 ]) fo r t h e m a p p in g f : Fqn ! Fq if f ( x + u®) ¡ f ( x ) = ua; ( 2 ) fo r a ll x 2 Fqn ; u 2 Fq a n d s o m e ¯ xe d a 2 Fq. Th e fo llo win g t h e o r e m fr o m [3 ] a llo ws t o c o n s t r u c t fu n c t io n s wit h lin e a r t r a n s la t o r s e x- p lic it ly. T heor em 2: L et G : Fqn ! Fqn and f ( x) = T rqn=q ( G ( x ) ) . Then f has a linear translator if and only if there is a non-bijective Fq-linear mapping L : Fqn ! Fqn such that f ( x ) = T rqn=q ( G( x ) ) = T rqn=q ( H ± L( x ) + ¯x ) ; for some H : Fqn ! Fqn and ¯ 2 Fqn. In this case, any element from the kernel of L is a linear translator for f . M. Evoyan, G. Kyureghyan and M. Kyureghyan 9 T heor em 3: L et 1 · k · n, ¸1; ¸2; ¢ ¢ ¢ ; ¸k 2 Fqn be linearly independent over Fq and fj : Fqn ! Fq, j = 1 ; : : : ; k. F urther, suppose ¸i is a bj;i-linear translator for fj, where i; j 2 f 1 ; 2 ; ¢ ¢ ¢ ; kg. Set B := 0 BBBB@ 1 + b1;1 b1;2 ¢ ¢ ¢ b1;k b2;1 1 + b2;2 ¢ ¢ ¢ b2;k . .. bk;1 bk;2 ¢ ¢ ¢ 1 + bk;k 1 CCCCA ; and let F : Fqn ! Fqn be de¯ned as F ( x ) = x + ¸1f1 ( x ) + ¸2f2 ( x ) + ¢ ¢ ¢ + ¸kfk ( x ) : Then F ( x ) = F ( y ) for some x; y 2 Fqn if and only if x = y + ¸1a1 + ¸2a2 + : : : + ¸kak; and 0 BB@ a1 ... ak 1 CCA 2 Fq n belongs to the kernel of B. In particular, the mapping F is a qn¡r-to-1 on Fqn where r is the rank of the matrix B. P r oof. L e t x; y 2 Fqn b e s u c h t h a t F ( x) = F ( y ) . Th e n , b y t h e d e ¯ n it io n o f F x + ¸1f1 ( x) + ¸2f2 ( x ) + ¢ ¢ ¢ + ¸kfk ( x ) = y + ¸1f1 ( y ) + ¸2f2 ( y ) + ¢ ¢ ¢ + ¸kfk ( y ) ; a n d t h u s x = y + ¸1a1 + ¸2a2 + : : : + ¸kak; fo r s o m e e le m e n t s ai 2 Fq. Ob s e r ve , t h a t wh e n ai 2 Fq, t h e n F à y + kX i=1 ¸iai ! = y + kX i=1 ¸iai + kX j=1 ¸j fj à y + kX i=1 ¸iai ! = y + kX i=1 ¸iai + kX j=1 ¸j à fj ( y ) + kX i=1 bj;iai ! = y + kX j=1 ¸j fj ( y ) + kX i=1 ¸iai + kX j=1 ¸j à kX i=1 bj;iai ! = F ( y ) + kX j=1 ¸j 0 @( bj;j + 1 ) aj + kX i=1;i 6=j bj;iai 1 A : To c o m p le t e t h e p r o o f it r e m a in s t o n o t e t h a t t h e lin e a r in d e p e n d e n c e o f ¸j im p lie s F ( y ) + kX j=1 ¸j 0 @( bj;j + 1 ) aj + kX i 6=j;i=1 bj;iai 1 A = F ( y ) ; if a n d o n ly if a ll c o e ± c ie n t s ( bj;j + 1 ) aj + kX i 6=j;i=1 bj;iai = 0 ; 1 0 On k-Switching of Mappings on Finite Fields o r e qu iva le n t ly if 0 BB@ a1 ... ak 1 CCA is in t h e ke r n e l o f t h e m a t r ix B. Th e o r e m 1 r e d u c e s t o Th e o r e m 8 fr o m [5 ] wh e n k = 1 . Fo r k = 2 ; 3 , it e xt e n d s Th e o r e m 1 0 fr o m [5 ] a n d Th e o r e m 1 , 2 fr o m [7 ] c o n s id e r a b ly. Remar k 2: L et ( °1; : : : ; °k ) be linear independent over Fq and f1 ( x ) ; : : : ; fk ( x ) non-zero functions from Fqn into Fq. Suppose the k-switching of the identity mapping x + kX j=1 fj ( x) °j; is a permutation on Fqn. Note that in this case the ( k ¡ 1 ) -switching x + k¡1X j=1 fj ( x ) °j; must not be a permutation on Fqn . This follows easily from Theorem 3 . Indeed, there are non-singular matrices over Fq whose leading principal ( n ¡ 1 ) £ ( n ¡ 1 ) minor is 0. Cor ollar y 1: W ith the notations of Theorem 3 , the mapping F is bijective on Fqn if and only if the matrix B has a full rank. L et B¡1 be the inverses matrix of B. D e¯ne the functions hj : Fqn ! Fq, j = 1 ; : : : ; k by 0 BB@ h1 ( x ) ... hk ( x) 1 CCA := B ¡1 ¢ 0 BB@ f1 ( x ) ... fk ( x) 1 CCA : Then the inverse mapping of F ( x) is given by F ¡1 ( x ) = x ¡ kX j=1 ¸jhj ( x) : P r oof. L e t Bj b e t h e j t h r o w in t h e m a t r ix B. Th e c a lc u la t io n s in t h e p r o o f o f Th e o r e m 3 s h o w t h a t F 0 @x ¡ kX j=1 ¸jhj ( x ) 1 A = x + kX j=1 ¸j fj ( x ) ¡ kX j=1 ¸jBj ¢ 0 BB@ h1 ( x ) ... hk ( x) 1 CCA = x + kX j=1 ¸j fj ( x ) ¡ kX j=1 ¸jBj ¢ B¡1 ¢ 0 BB@ f1 ( x ) ... fk ( x ) 1 CCA = x + kX j=1 ¸j fj ( x ) ¡ kX j=1 ¸jfj ( x ) = x: Th e in ve r s e m a p p in g o f t h e p e r m u t a t io n F o b t a in e d in Co r o lla r y 1 is a k-s wit c h in g o f t h e id e n t it y m a p p in g a s we ll. Th e n e xt p r o p o s it io n s h o ws t h a t t h is p r o p e r t y h o ld s fo r a ll p e r m u t a t io n s o b t a in e d via s wit c h in g fr o m t h e id e n t it y m a p p in g . M. Evoyan, G. Kyureghyan and M. Kyureghyan 1 1 P r oposition 3: If a permutation F : Fqn ! Fqn is a k-switching of the identity mapping of Fqn, then its inverse is a k-switching of the identity mapping as well. P r oof. L e t ( °1; : : : ; °k ) b e lin e a r in d e p e n d e n t o ve r Fq a n d f1 ( x ) ; : : : ; fk ( x ) : Fqn ! Fq b e n o n -z e r o fu n c t io n s . Fu r t h e r s u p p o s e t h a t t h e m a p p in g F ( x) = x + kX j=1 fj ( x) °j; is a p e r m u t a t io n o f Fqn . If F ¡1 is t h e in ve r s e m a p p in g o f F , t h e n x = F ± F ¡1 ( x ) = F ¡1 ( x) + kX j=1 ( fj ± F ¡1 ) ( x ) °j : Th u s F ¡1 ( x ) = x ¡ kX j=1 ( fj ± F ¡1 ( x ) ) °j; im p lyin g t h e r e s u lt . Refer ences [1 ] A . A kb a r y, D . Gh io c a a n d Q. W a n g , \ On c o n s t r u c t in g p e r m u t a t io n s o f ¯ n it e ¯ e ld s " , F inite F ields Appl., vo l. 1 7 , p p . 5 1 -6 7 , 2 0 1 1 . [2 ] L . B u d a g h ya n , C. Ca r le t a n d G. L e a n d e r , \ Co n s t r u c t in g n e w A P N fu n c t io n s fr o m kn o wn o n e s " , F inite F ields Appl., vo l. 1 5 , p p . 1 5 0 -1 5 9 , 2 0 0 9 . [3 ] P . Ch a r p in a n d G. K yu r e g h ya n , \ W h e n d o e s G ( x) + °Tr ( H ( x) ) p e r m u t e Fpn ?" , F inite F ields Appl., vo l. 1 5 , p p . 6 1 5 -6 3 2 , 2 0 0 9 . [4 ] Y . E d e l a n d A . P o t t , \ A n e w a lm o s t p e r fe c t n o n lin e a r fu n c t io n wh ic h is n o t qu a d r a t ic " , Adv. M ath. Commun., vo l. 3 , p p . 5 9 -8 1 , 2 0 0 9 . [5 ] G. K yu r e g h ya n , \ Co n s t r u c t in g p e r m u t a t io n s o f ¯ n it e ¯ e ld s via lin e a r t r a n s la t o r s " , J . Combin. Theory Ser. A, vo l. 1 1 8 , p p . 1 0 5 2 -1 0 6 1 , 2 0 1 1 . [6 ] G. K yu r e g h ya n a n d Y in Ta n , \ On a fa m ily o f p la n a r m a p p in g s " , E nhancing crypto- graphic primitives with techniques from error correcting codes, NATO Sci. P eace Secur. Ser. D Inf. Commun. Secur. 23, IOS , A m s t e r d a m , p p . 1 7 5 -1 7 8 , 2 0 0 9 . [7 ] M. K yu r e g h ya n a n d S . A b r a h a m ya n , \ A m e t h o d o f c o n s t r u c t in g p e r m u t a t io n p o lyn o - m ia ls o ve r ¯ n it e ¯ e ld s " , Int. J . Information Theories and Applications, vo l. 1 7 , p p . 3 2 8 -3 3 4 , 2 0 1 0 . [8 ] A . P o t t a n d Y . Zh o u , \ S wit c h in g c o n s t r u c t io n o f p la n a r fu n c t io n s o n ¯ n it e ¯ e ld s " , Arithmetic of ¯nite ¯elds, L ecture Notes in Comput. Sci. 6087, S p r in g e r , B e r lin , p p . 1 3 5 - 1 5 0 , 2 0 1 0 . Submitted 14.12.2012, accepted 11.02.2013. 1 2 On k-Switching of Mappings on Finite Fields ì»ñç³íáñ ¹³ßï»ñÇ íñ³ ³ñï³å³ïÏ»ñáõÙÝ»ñÇ k-÷á˳ñÏáõÙÝ»ñÇ Ù³ëÇÝ Ø. ¾íáÛ³Ý, ¶. ÎÛáõñ»ÕÛ³Ý ¨ Ø. ÎÛáõñ»ÕÛ³Ý ²Ù÷á÷áõÙ öá˳ñÏáõÙÝ»ñÁ ÏÇñ³éíáõÙ »Ý í»ñç»ñë ÉáõÛë ï»ë³Í í»ñç³íáñ ¹³ßï»ñÇ íñ³ Ûáõñ³Ñ³ïáõÏ ³ñï³å³ïÏ»ñáõÙÝ»ñÇ Ï³éáõóÙ³ÝÁ ÝíÇñí³Í ³ß˳ï³ÝùÝ»ñáõÙ: ²Ûë ³ß˳ï³ÝùáõÙ ÁݹѳÝñ³óíáõÙ ¿ ÷á˳ñÏÙ³Ý Ñ³ëϳóáõÃÛáõÝÁ ÙÇÝ㨠k -÷á˳ñÏáõÙ, áñï»Õ · k · n , ÇÝãå»ë ݳ¨ Ý»ñϳ۳óíáõÙ »Ý k-÷á˳ñÏáõÙÝ»ñÇ ÁݹѳÝáõñ ѳïÏáõÃÛáõÝÝ»ñ ¨ Ýϳñ³·ñíáõÙ ¿ k-÷á˳ñÏáõÙÝ»ñÇ ÙÇçáóáí ï»Õ³÷áËáõÃÛáõÝÝ»ñÇ Ï³éáõóÙ³Ý Ù»Ãá¹: Î k-îáìåíàõ îòîáðàæåíèé íà êîíå÷íûõ ïîëåé Ì. Ýâîÿí, Ã. Êþðåãÿí è Ì. Êþðåãÿí Àííîòàöèÿ Êîíñòðóêöèÿ îáìåíà èñïîëüçóåòñÿ â íåñêîëüêèõ íåäàâíèõ ðàáîòàõ ïî ïîñòðîåíèþ ñïåöèôè÷åñêèõ îòîáðàæåíèé íà êîíå÷íûõ ïîëåé.  ýòîé ñòàòüå ïîíÿòèå îá îáìåíå îáîáùåíî äî k-îáìåíà ñ · k · n . Òàêæå ïðåäñòàâëåíû íåêîòîðûå îáùèå ñâîéñòâà k-îáìåíà è îïèñàí ìåòîä ïîëó÷åíèÿ ïåðåñòàíîâîê ñ èñïîëüçîâàíèåì k-îáìåíà.