article_with_style.DVI Mathematical Problems of Computer Science 31, 49{59, 2008. On Optimal H ypothesis T esting for P air of Stochastically Coupled Objects. E vg u e n i A . H a r o u t u n ia n a n d A r a m O. Y e s s a ya n Institute for Informatics and Automation Problems of NAS of RA e-mail: eghishe@sci.am Abstract The paper is devoted to hypotheses testing for a model consisting of two stochas- tically coupled objects. It is supposed that L1 possible probability distributions are known for the ¯rst object and the second object is distributed according to one of L1 £ L2 given conditional distributions depending on the distribution index and the current observed state of the ¯rst object. The matrix of interdependencies of all pos- sible pairs of the error probability exponents in asymptotically optimal tests of dis- tributions of both objects is studied. The case of two objects which cannot have the same probability distribution from two possible variants was considered by Ahlswede and Haroutunian. This case for three hypotheses and the model of two statistically dependent objects for two hypotheses were examined by Haroutunian and Yessayan. Refer ences [1 ] E . A . H a r o u t u n ia n , \ L o g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f m u lt ip le s t a - t is t ic a l h yp o t h e s e s " , P roblems of Control and Information Theory, vo l. 1 9 ( 5 -6 ) , p p . 4 1 3 { 4 2 1 , 1 9 9 0 . [2 ] R . F. A h ls we d e a n d E . A . H a r o u t u n ia n , \ On lo g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f h yp o t h e s e s a n d id e n t i¯ c a t io n " . L e c t u r e N o t e s in Co m p u t e r S c ie n c e , vo l. 4 1 2 3 , \ Ge n e r a l Th e o r y o f In fo r m a t io n Tr a n s fe r a n d Co m b in a t o r ic s " , S p r in g e r , p p . 4 6 2 { 4 7 8 , 2 0 0 6 . [3 ] E . A . H a r o u t u n ia n , \ R e lia b ilit y in m u lt ip le h yp o t h e s e s t e s t in g a n d id e n t i¯ c a t io n " . P r o c e e d in g s o f t h e N A TO A S I, Y e r e va n 2 0 0 3 , N A TO S c ie n c e S e r ie s , III: Co m p u t e r a n d S ys t e m s S c ie n c e s , vo l. 1 9 8 , IOS P r e s s , p p . 1 8 9 { 2 0 1 , 2 0 0 5 . [4 ] E . A . H a r o u t u n ia n a n d P . M. H a ko b ya n , \ On lo g a r it h m ic a lly o p t im a l h yp o t h e s is t e s t - in g o f t h r e e d is t r ib u t io n s fo r p a ir o f in d e p e n d e n t o b je c t s " , M athematical P roblems of Computer Science, vo l. X X IV , p p . 7 6 { 8 1 , 2 0 0 5 . [5 ] E . A . H a r o u t u n ia n a n d P . M. H a ko b ya n , \ On L A O t e s t in g o f m u lt ip le h yp o t h e s e s fo r p a ir o f o b je c t s " , M athematical P roblems of Computer Science, vo l. X X V , p p . 9 2 { 1 0 0 , 2 0 0 6 . [6 ] E . A . H a r o u t u n ia n a n d A . O. Y e s s a ya n , \ On h yp o t h e s e s t e s t in g fo r t wo d i®e r e n t ly d is t r ib u t e d o b je c t s " . M athematical P roblems of Computer Science, vo l. X X V I, p p . 9 1 { 9 6 , 2 0 0 6 . [7 ] I. Cs is z ¶a r a n d J. K Äo r n e r , Information Theory: Coding Theorems for D iscrete M emo- ryless Systems, A c a d e m ic P r e s s , N e w Y o r k, 1 9 8 1 . 4 9 5 0 On Optimal Hypothesis Testing for Pair of Stochastically Coupled Objects. [8 ] T. M. Co ve r a n d J. A . Th o m a s , E lements of Information Theory. W ile y, N e w Y o r k, 1 9 9 1 . [9 ] I. Cs is z ¶a r a n d P . C. S h ie ld s , \ In fo r m a t io n t h e o r y a n d s t a t is t ic s : a t u t o r ia l" . F oun- dations and Trends in Communications and Information Theory, vo l.1 , n o .4 , 2 0 0 4 . [1 0 ] E . A . H a r o u t u n ia n , M. E . H a r o u t u n ia n , a n d A . N . H a r u t yu n ya n , \ R e lia b ilit y c r it e r ia in in fo r m a t io n t h e o r y a n d in s t a t is t ic a l h yp o t h e s e s t e s t in g " , F oundations and Trends in Communications and Information Theory, vo l. 4 , n o . 2 -3 , 2 0 0 8 . [1 1 ] E . A . H a r o u t u n ia n a n d A . O. Y e s s a ya n , \ On lo g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l h yp o t h e s is t e s t in g fo r p a ir o f s t a t is t ic a lly d e p e n d e n t o b je c t s " , M athematical P roblems of Computer Science, vo l. X X IX , p p . 9 7 { 1 0 3 , 2 0 0 7 . êïá˳ëïÇÏáñ»Ý ϳËí³Í ûµÛ»ÏïÝ»ñÇ ½áõÛ·Ç Ýϳïٳٵ í³ñϳÍÝ»ñÇ ûåïÇÙ³É ëïáõ·Ù³Ý Ù³ëÇÝ º. ². гñáõÃÛáõÝÛ³Ý ¨ ². ú. ºë³Û³Ý ²Ù÷á÷áõÙ ÈáõÍí³Í ¿ ëïá˳ëïÇÏáñ»Ý ϳËÛ³É »ñÏáõ ûµÛ»ÏïÝ»ñÇ Ýϳïٳٵ í³ñϳÍÝ»ñÇ Éá·³ñÇÃÙáñ»Ý ³ëÇÙåïáïáñ»Ý ûåïÇÙ³É ëïáõ·Ù³Ý ËݹÇñÁ: ²é³çÇÝ ûµÛ»ÏïÁ ϳñáÕ ¿ µ³ßËí³Í ÉÇÝ»É ïñí³Í L1 ѳí³Ý³Ï³Ý³ÛÇÝ µ³ßËáõÙÝ»ñÇó Ù»Ïáí, ÇëÏ »ñÏñáñ¹Áª ϳËí³Í ³é³çÇÝÇ µ³ßËáõÙÇó ¨ ¹Çï³ñÏíáÕ å³ÑÇÝ Ýñ³ íÇ׳ÏÇó, ïñí³Í L1 £ L2å³ÛÙ³Ý³Ï³Ý Ñ³í³Ý³Ï³Ý³ÛÇÝ µ³ßËáõÙÝ»ñÇó Ù»Ïáí: àõëáõÙݳëÇñí»É ¿ ûµÛ»ÏïÝ»ñÇ Ýϳïٳٵ í³ñϳÍÝ»ñÇ ï»ëï³íáñÙ³Ý ë˳ÉÝ»ñÇ Ñ³í³Ý³Ï³ÝáõÃÛáõÝÝ»ñÇ óáõóÇãÝ»ñÇ (Ñáõë³ÉÇáõÃÛáõÝÝ»ñÇ) ÷áËϳËí³ÍáõÃÛáõÝÝ»ñÇ Ù³ïñÇóÁ: