article_with_style.DVI Mathematical Problems of Computer Science 31, 73{78, 2008. Application of LDT to M any H ypotheses Optimal T esting for M ar kov Chain L e a d e r N a va e i Payame Noor University (PNU), IRAN Abstract The problem of many (L > 2) hypotheses testing on distributions of a ¯nite state Markov chain is studied. We apply large deviations techniques (LDT). It is proved that this method of investigation in solving the problem of logarithmically asymptotically optimal (LAO) hypotheses testing is easier than the procedure that was introduced by Haroutunian. The matrix of exponents E = fEljmg; m; l = 1; L, of error probabilities of the LAO test Eljm(Á) = lim N !1 ¡ 1 N log ®ljm(ÁN ); where ® N ljm(ÁN ) for l 6= m is the probability to accept the hypothesis l, when the hypothesis m is true, is determined. Refer ences [1 ] B la h u t R . E . \ P r in c ip le a n d P r a c t ic e o f In fo r m a t io n Th e o r y" , r e a d in g , MA , A d d is o n - we s le y, 1 9 8 7 . [2 ] Cs is z ¶a r I. a n d S h ie ld s P . \ In fo r m a t io n Th e o r y a n d S t a t is t ic s " , Fu n d e m e n t a ls a n d Tr e n d s in Co m m u n ic a t io n s a n d In fo r m a t io n Th e o r y, vo l. 1 , n o . 4 , 2 0 0 4 . [3 ] Cs is z ¶a r I. a n d K Äo r n e r J. \ In fo r m a t io n Th e o r y: Co d in g Th e o r e m fo r D is c r e t e Me m o r yle s s S ys t e m s " , A c a d e m ic p r e s s , N e wY o r k, 1 9 8 1 . [4 ] Cs is z ¶a r I. \ Me t h o d o f t yp e s " , IE E E Tr a n s . In fo r m . Th e o r y, vo l. 4 4 . n o . 6 . p p . 2 5 0 5 -2 5 2 3 , 1 9 9 8 . [5 ] D e m b o A . a n d Ze it o u n i O. \ L a r g e D e via t io n s Te c h n iqu e s a n d A p p lic a t io n s " , Jo n s a n d B a r t le t . P u b lis h e r s , L o n d o n , 1 9 9 3 . [6 ] Gu t m a n M. \ A s ym p t o t ic a lly o p t im a l c la s s ī c a t io n fo r m u lt ip le t e s t wit h e m p ir ic a lly o b s e r ve d s t a t is t ic s " , IE E E Tr a n s . In fo r m . Th e o r y, vo l. 3 5 , n o . 2 . p p . 4 0 1 -4 0 8 , 1 9 8 9 . [7 ] H a r o u t u n ia n E . A . \ On a s ym p t o t ic a lly o p t im a l t e s t in g o f h yp o t h e s e s c o n c e r n in g Ma r ko v c h a in " , ( in R u s s ia n ) . Iz ve s t ia A c a d . N a u k A r m e n ia n S S R . S e r ia Ma t h e m . vo l. 2 2 , n o . 1 . p p . 7 6 -8 0 , 1 9 8 8 . [8 ] H a r o u t u n ia n E . A , H a r o u t u n ia n M. E a n d H a r u t yu n ya n A . N .\ R e lia b ilit y Cr it e r ia in In fo r m a t io n Th e o r y a n d in S t a t is t ic a l H yp o t h e s is Te s t in g " , Fo u n d a t io n s a n d Tr e n d s in Co m m u n ic a t io n s a n d In fo r m a t io n Th e o r y, vo l. 4 , n o . 2 -3 , 2 0 0 7 . [9 ] K u llb a c k S . \ In fo r m a t io n Th e o r y a n d S t a t is t ic s " , W ile y, N e w Y o r k, 1 9 5 9 . [1 0 ] N a t a r a ja n S .\ L a r g e d e via t io n s , h yp o t h e s e s t e s t in g , a n d s o u r c e c o d in g fo r ¯ n it e Ma r ko v c h a in " , IE E E Tr a n s . In fo r m . Th e o r y, vo l. 3 1 , n o . 3 , p p . 3 6 0 -3 6 5 , 1 9 8 5 . [1 1 ] N a va e i L .\ On m a n y h yp o t h e s e s L A O t e s t in g via t h e t h e o r y o f la r g e d e via t io n s " , Fa r E a s t Jo u r n a l o f Ma t h e m a t ic a l S c ie n c e s , vo l. 2 5 , n o . 2 , p p . 3 3 5 -3 4 4 , 2 0 0 7 . 7 3 7 4 Application of LDT to Many Hypotheses Optimal Testing for Markov Chain ØÞî ÏÇñ³éáõÃÛáõÝÁ سñÏáíÇ ßÕóݻñÇ Ñ³Ù³ñ µ³½Ù³ÏÇ í³ñϳÍÝ»ñÇ ûåïÇÙ³É ï»ëï³íáñÙ³ÝÁ È. ܳí³ÛÇ ²Ù÷á÷áõÙ àõëáõÙݳëÇñí³Í ¿ í»ñç³íáñ íÇ׳ÏÝ»ñáí سñÏáíÇ ßÕóÛÇ Ýϳïٳٵ µ³½Ù³ÏÇ í³ñϳÍÝ»ñÇ ëïáõ·Ù³Ý ËݹÇñÁ: ÎÇñ³éíáõÙ ¿ Ù»Í ß»ÕáõÙÝ»ñÇ ï»ËÝÇÏ³Ý (ØÞî): ²å³óáõóí»É ¿, áñ í³ñϳÍÝ»ñÇ Éá·³ñÇÃÙáñ»Ý ³ëÇÙåïáïáñ»Ý ûåïÇÙ³É (Ȳú) ï»ëï³íáñÙ³Ý Ñ»ï³½áïÙ³Ý ³Ûë »Õ³Ý³ÏÁ ³í»ÉÇ Ñ»ßï ¿, ù³Ý гñáõÃÛáõÝÛ³ÝÇ ÏáÕÙÇó Ý»ñÙáõÍí³ÍÁ: