D:\sbornik\...\rev.DVI Mathematical Problems of Computer Science 31, 142{149, 2008. N ew M athematical Appr oach for I nvestigation of Statistical P r oper ties of Random E nvir onment of 1D Quantum N-P ar ticles System I n E xter nal Field Ashot S. Gevorkyan y and Arax A. Gevorkyan z y Institue for Informatics and Automation Problems of NAS of RA z Yerevan State University E-mail: g ashot@sci.am, g arax@ipia.sci.am Abstract The investigation of 1D quantum N-particles system (PS) with relaxation in the random environment under the in°uence of external ¯eld is conducted within the limits of the stochastic di®erential equation (SDE) of Langevin-SchrÄodinger (L-Sch) type. Using L-Sch equation the 2D second order non-stationary partial di®erential equation is found, which describes the quantum distribution in the environment, depending on energy of nonperturbed 1D quantum N-PS and on the external ¯eld's parameters. It is shown that the average value of interaction potential between 1D disordered quantum N -PS and on the external ¯eld, has the ultraviolet divergence. This problem is solved by renormalization of equation for the function of quantum distribution. It is shown that it has a sense of dimensional renormalization which is characteristic for the quantum ¯eld theory. Critical properties of environment are investigated in detail. The possibility of ¯rst-order phase transition in environment depending on amplitude of an external ¯eld is shown. Refer ences [1 ] A . S . Ge vo r kya n a n d Ch in -K u n H u , On a m a t h e m a t ic a l a p p r o a c h fo r t h e in ve s t ig a t io n o f s o m e s t a t is t ic a l p h e n o m e n a o f a d is e r d o r e d 3 D s p in s ys t e m in t h e e xt e r n a l ¯ e ld . P r o - c e e d in g s o f t h e IS A A C Co n f. o n A n a lys is , Y e r e va n , A r m e n ia , E d s . b y G. A . B a r s e g ia n e t a l., 1 6 5 -1 7 8 , 2 0 0 4 . [2 ] A . V . B o g d a n o v, A . S . Ge vo r kya n , A .G. Gr ig o r ya n , A MS / IP S t u d ie s in A d va n c e d Ma t h e m a t ic s , 13, 8 1 , 1 9 9 9 . [3 ] I. M. L ifs h it s , S . A . Gr e d e s ku l a n d L . A . P a s t u r , In t r o d u c t io n t o t h e t h e o r y o f d is o r d e r e d s ys t e m s . Mo s c o w, N a u ka , ( in R u s s ia n ) 1 9 8 2 . [4 ] A . S . Ge vo r kya n , E xa c t ly s o lva b le m o d e ls o f s t o c h a s t ic qu a n t u m m e c h a n ic s wit h in t h e fr a m e wo r k o f L a n g e vin -S c h r e o d in g e r t yp e e qu a t io n , A n a lys is a n d a p p lic a t io n s . P r o c e e d - in g o f t h e N A TO A d va n c e d r e s e a r c h wo r ks h o p , Y e r e va n 2 0 0 2 , E d s . b y G. A . B a r s e g ia n a n d H . B e g e h r , N A TO S c ie n c e p u b lic a t io n s , 4 1 5 -4 4 2 , K lu we r , 2 0 0 4 . [5 ] V . I. K lya t s kin , S t a t is t ic a l d e s c r ip t io n o f d yn a m ic a l s ys t e m s wit h ° u c t u a t in g p a r a m e - t e r s . Mo s c o w, N a u ka , ( in R u s s ia n ) 1 9 7 5 . 1 4 2 A. Gevorkyan and Ar. Gevorkyan 1 4 3 [6 ] A . N . V a s il'e v, Th e Qu a n t u m -̄ e ld R e n o r m g r o u p in Th e o r y o f Cr it ic a l B e h a vio u r a n d o f S t o c h a s t ic D yn a m ic s . P u b lis h in g h o u s e P IN F, S t . P e t e r s b u r g ( in R u s s ia n ) 1 9 9 8 . [7 ] M. V . Fe d o r yu k, Me t h o d o f S a d d le P o in t s , P u b lis h e r " N a u ka " ( in R u s s ia n ) 1 9 7 7 . 1D ùí³Ýï³ÛÇÝ N-Ù³ëÝÇÏÝ»ñÇ Ñ³Ù³Ï³ñ·Ç å³ï³Ñ³Ï³Ý ßñç³Ï³ÛùÇ íÇ׳ϳ·ñ³Ï³Ý ѳïÏáõÃÛáõÝÝ»ñÁ ³ñï³ùÇÝ ¹³ßïáõÙ áõëáõÙݳëÇñ»Éáõ Ýáñ ٳûٳïÇÏ³Ï³Ý å³ïÏ»ñ³óáõÙ ². ¶¨áñ·Û³Ý ¨ ²ñ. ¶¨áñ·Û³Ý ²Ù÷á÷áõÙ 1D ùí³Ýï³ÛÇÝ N-Ù³ëÝÇÏÝ»ñÇ Ñ³Ù³Ï³ñ·Ç (ØÐ) å³ï³Ñ³Ï³Ý ßñç³Ï³ÛùÇ é»É³Ïë³óÇ³Ý ³ñï³ùÇÝ ¹³ßïáõÙ Ýϳñ³·ñí³Í ¿ ȳÝŨ»Ý-Þñ»¹ÇÝ·»ñÇ (È-Þñ) ïÇåÇ å³ï³Ñ³Ï³Ý ¹Çý»ñ»ÝóÇ³É Ñ³í³ë³ñÙ³Ý ßñç³Ý³ÏÝ»ñáõÙ: ú·ï³·áñÍ»Éáí È-Þñ ѳí³ë³ñáõÙÁ‘ ëï³óí³Í ¿ »ñÏñáñ¹ ϳñ·Ç 2D áã ëï³óÇáݳñ Ù³ëݳÏÇ ³Í³ÝódzÉÝ»ñáí ¹Çý»ñ»ÝóÇ³É Ñ³í³ë³ñáõÙ 1D ùí³Ýï³ÛÇÝ N-ØÐ ßñç³Ï³ÛùÇ µ³ßËٳݑ ϳËí³Í ѳٳϳñ·Ç ãËáïáñí³Í ¿Ý»ñ·Ç³ÛÇó ¨ ³ñï³ùÇÝ ¹³ßïÇ å³ñ³Ù»ïñ»ñÇó: òáõÛó ¿ ïñí³Í, áñ N-ØÐ ¨ ³ñï³ùÇÝ ¹³ßïÇ ÙÇç¨ ÷á˳½¹»óáõÃÛ³Ý åáï»ÝódzÉÇ ÙÇçÇÝ Ù»ÍáõÃÛáõÝÁ áõÝÇ áõÉïñ³Ù³Ýáõ߳ϳ·áõÛÝ ï³ññ³ÙÇïáõÙ: ²Ûë åñáµÉ»ÙÁ ÉáõÍí»É ¿ ùí³Ýï³ÛÇÝ µ³ßËÙ³Ý Ñ³í³ë³ñÙ³Ý é»ÝáñÙ³Éǽ³ódzÛÇ Ù»Ãá¹áí: òáõÛó ¿ ïñí³Í, áñ é»ÝáñÙ³Éǽ³óÇ³Ý áõÝÇ ï³ñ³Í³ã³÷³ÛÇÝ ÇÙ³ëï, áñÁ ѳïáõÏ ¿ ùí³Ýï³ÛÇÝ ¹³ßïÇ ï»ëáõÃÛáõÝÝ»ñÇÝ: سÝñ³Ù³ëÝáñ»Ý áõëáõÙݳëÇñí³Í ¿ ßñç³Ï³ÛùÇ íÇ׳ϳ·ñáõÃÛ³Ý ÏñÇïÇÏ³Ï³Ý Ñ³ïÏáõÃÛáõÝÝ”ñÁ ¨ óáõÛó ¿ ïñí³Í, áñ ³ÛÝ Ï³Ëí³Í ³ñï³ùÇÝ ¹³ßïÇ ³ÙåÉÇïáõ¹Çó áõÝÇ ³é³çÇÝ Ï³ñ·Ç ÷áõɳÛÇÝ ³ÝóáõÙ: