Microsoft Word - Tigran_Hakobhin.doc Mathematical Problems of Computer Science 30, 71--75, 2008. 71 Stop Rule for Image Hierarchical Segmentation Algorithm David Asatryan, Grigor Sazhumyan Institute for Informatics and Automaation Problems of NAN RA e-mail dasat@ipia.sci.am Abstract In this paper we consider an important problem of stopping the hierarchical segmentation procedure when the appropriate segmentation is achieved. This problem arises at every segmentation procedure, which uses a searching algorithm for selection of acceptable decision. We propose an algorithm for stopping the hierarchical segmentation procedure. Stop-rule is based on the segmentation homogeneity measure, and uses a ratio of special sum of squares. The first sum equals to summarized variance of pixel intensity relative to the centers of intervals, being determined by thresholds, the second one expresses variance of mean values of the segments relative to the same centers. Examples of segmentation results to demonstrate the features and properties of proposed technique are considered. References 1. D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics”, Proc. ICCV'01, Vol. II. Vancouver, Canada, pp. 416-423, 2001. 2. Y. J. Zhang, “A survey on evaluation methods for image segmentation”, Pattern Recognition 29(8), pp. 1335-1346, 1996. 3. Q. Luo, and T. M. Khoshgoftaar, “Unsupervised Multiscale Color Image Segmentation Based on MDL Principle”. IEEE Transactions on Image Processing, Vol. 15, No 9, pp. 2755-2761, 2006. 4. NASA. “Recursive Hierarchical Segmentation (RHSEG) Pre-processing Software”, [http://techtransfer.gsfc.nasa.gov/rhseg - 21.06.2006]. 5. Д. Г. Асатрян, Г. С. Сажумян, “Об одном методе пороговой локальной сегментации изображения”, Mathematical Problems of Computer Science, vol. 26, pp. 15-20, 2006. 6. Д. Г. Асатрян, Г. С. Сажумян, “Метод когерентной сегментации и его приложение к восстановлению поврежденных изображений”, Вестник ГИУА, сер. Моделирование, оптимизация, управление, вып. 9, т. 2, с. 15-21, 2006. 7. D. G. Asatryan, G. S. Sazhumyan, and H. S. Shahverdyan, “Technique for Coherent Segmentation of Image and Applications”, Mathematical Problems of Computer Science, vol. 28, pp. 88-93, 2007. 72 Stop Rule for Image Hierarchical Segmentation Algorithm γݷ³éÇ Ï³ÝáÝ` å³ïÏ»ñÇ ÑÇ»ñ³ñËÇÏ Ñ³ïí³Í³íáñÙ³Ý Ù»Ãá¹Ç ѳٳñ ¸. ²ë³ïñÛ³Ý, ¶. ê³ÅáõÙÛ³Ý, ²Ù÷á÷áõ٠ܳËÏÇÝáõÙ Ùß³Ïí³Í` å³ïÏ»ñÇ ÑÇ»ñ³ñËÇÏ ÏáÑ»ñ»Ýï ѳïí³Í³íáñÙ³Ý Ù»Ãá¹Ç ѳٳñ ³é³ç³ñÏí»É ¿ ϳݷ³éÇ Ï³ÝáÝ, Ñ»Ýí³Í ù³é³ÏáõëÇÝ»ñÇ ·áõÙ³ñÝ»ñÇ »ñÏáõ ³ñï³Ñ³ÛïáõÃÛáõÝÝ»ñÇ Ñ³ñ³µ»ñáõÃÛ³Ý íñ³: ¸ñ³ÝóÇó ³é³çÇÝÝ ³ñï³Ñ³ÛïáõÙ ¿ ëï³óí³Í ë»·Ù»ÝïÝ»ñÇ ÷Çùë»ÉÝ»ñÇ å³ÛͳéáõÃÛ³Ý ù³é³Ïáõë³ÛÇÝ ß»ÕáõÙÁ ÏÇñ³éí³Í ߻ٻñÇ ³é³ç³óñ³Í ÙÇç³Ï³Ûù»ñÇ Ï»ÝïñáÝÝ»ñÇ Ýϳïٳٵ, ÇëÏ »ñÏñáñ¹Á` ÝáõÛÝ ë»·Ù»ÝïÝ»ñÇ ÙÇçÇÝÝ»ñÇ ù³é³Ïáõë³ÛÇÝ ß»ÕáõÙÁ ÝáõÛÝ Ï»ÝïñáÝÝ»ñÇ Ýϳïٳٵ: Üϳñ³·ñí»É »Ý ³é³ç³ñÏí³Í ϳÝáÝÇ ÏÇñ³éáõÃÛ³Ý ³ñ¹Ûáõݳí»ïáõÃÛáõÝÁ óáõó³¹ñáÕ Ñ³Ù³å³ï³ëË³Ý å³ïÏ»ñÝ»ñ ¨ Ãí³ÛÇÝ ³ñ¹ÛáõÝùÝ»ñ: