Mathematical Problems of Computer Science 51, 7--20, 2019. UDC 519.712.6 Complexity of Error-Correcting Code Based on Nearest Neighbor Search Algorithm1 Levon H. Aslanyan and Hayk E. Danoyan Institute for Informatics and Automation Problems of NAS RA e-mail: lasl@sci.am, hed@ipia.sci.am Abstract The Nearest Neighbor search algorithm considered in this paper is well known (Elias algorithm). It uses error-correcting codes and constructs appropriate hash-coding schemas. These schemas preprocess the data in the form of lists. Each list is contained in some sphere, centered at a code-word. The algorithm is considered for the cases of perfect codes, so the spheres and, consequently, the lists do not intersect. As such codes exist for the limited set of parameters, the algorithm is considered for some other generalizations of perfect codes, and then the same data point may be contained in different lists. A formula of time complexity of the algorithm is obtained for these cases, using coset weight structures of the mentioned codes. Keywords: NN search, Best match, Hash-coding schema, Perfect Codes, Uniformly Packed codes, Quasi-perfect codes. 1. Introduction Let ๐ธ๐ธ = {0,1}. Consider Cartesian degree ๐ธ๐ธ๐‘›๐‘›, which is known as the set of vertexes of n- dimensional unit cube. For any ๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ โˆˆ ๐ธ๐ธ๐‘›๐‘› denote by ๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) the Hamming distance between vectors x and y. For an arbitrary ๐‘ฅ๐‘ฅ โˆˆ ๐ธ๐ธ๐‘›๐‘› denote by ๐‘†๐‘†๐‘Ÿ๐‘Ÿ๐‘›๐‘›(๐‘ฅ๐‘ฅ) the sphere of radius r, centred at x, i.e., ๐‘†๐‘†๐‘Ÿ๐‘Ÿ๐‘›๐‘›(๐‘ฅ๐‘ฅ) = {๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ โˆˆ ๐ธ๐ธ๐‘›๐‘›, ๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) โ‰ค ๐‘Ÿ๐‘Ÿโ„ } and by ๐‘‚๐‘‚๐‘Ÿ๐‘Ÿ๐‘›๐‘›(๐‘ฅ๐‘ฅ) denote the shell of radius r, centred at x, i.e., ๐‘‚๐‘‚๐‘Ÿ๐‘Ÿ๐‘›๐‘›(๐‘ฅ๐‘ฅ) = {๐‘ฆ๐‘ฆ ๐‘ฆ๐‘ฆ โˆˆ ๐ธ๐ธ๐‘›๐‘›, ๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) = ๐‘Ÿ๐‘Ÿโ„ }. We will denote by ๐‘๐‘๐‘๐‘๐‘Ÿ๐‘Ÿ(๐‘ฅ๐‘ฅ) the carrier of vector ๐‘ฅ๐‘ฅ = 1 Partially supported by grants โ„– 18RF-144, and โ„– 18T-1B407 of the Science Committee of the Ministry of Education and Science of Armenia 7 Complexity of Error-Correcting Code Based on Nearest Neighbor Search Algorithm 8 (๐‘ฅ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘ฅ๐‘›๐‘›) then ๐‘๐‘๐‘๐‘๐‘Ÿ๐‘Ÿ(๐‘ฅ๐‘ฅ) = {๐‘–๐‘– ๐‘ฅ๐‘ฅ๐‘–๐‘– = 1, ๐‘–๐‘– = 1, โ€ฆ , ๐‘›๐‘›โ„ }. Denote by ๐‘ค๐‘ค(๐‘ฅ๐‘ฅ) the weight of vector ๐‘ฅ๐‘ฅ, i.e., ๐‘ค๐‘ค(๐‘ฅ๐‘ฅ) = โˆ‘ ๐‘ฅ๐‘ฅ๐‘–๐‘– ๐‘›๐‘› ๐‘–๐‘–=1 . Let us have a subset ๐น๐น โŠ† ๐ธ๐ธ๐‘›๐‘› and a vector ๐‘ฅ๐‘ฅ โˆˆ ๐ธ๐ธ๐‘›๐‘›. Let us consider the problem of finding the set of nearest neighbors of ๐‘ฅ๐‘ฅ from ๐น๐น. More precisely it is required to find the set ๐น๐น๐‘ฅ๐‘ฅ = {๐‘ฆ๐‘ฆ โˆˆ ๐น๐น ๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐‘ฆ๐‘ฆ) = ๐‘‘๐‘‘(๐‘ฅ๐‘ฅ, ๐น๐น)}โ„ . Hash coding schemaes are considered [1,2] for preprocessing the data. A brief description of such schemes is brought below. Hash function is defined as a function โ„Ž: ๐ธ๐ธ๐‘›๐‘› โ†’ ๐‘‰๐‘‰, where ๐‘‰๐‘‰ = {๐‘ฃ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘ฃ๐‘๐‘} is a finite set of ๐‘๐‘ elements [1]. Cases are usually considered, when ๐‘‰๐‘‰ = ๐ธ๐ธ๐‘˜๐‘˜, ๐‘˜๐‘˜ โ‰ค ๐‘›๐‘›. The subset F is represented as a union of ๐‘๐‘ disjoint sets (lists). Denote by ๐ต๐ต๐‘–๐‘– the set {๐‘ฅ๐‘ฅ โˆˆ ๐ธ๐ธ๐‘›๐‘› โ„Ž(๐‘ฅ๐‘ฅ) = ๐‘ฃ๐‘ฃ๐‘–๐‘–โ„ }. The ๐‘–๐‘–-th list ๐ฟ๐ฟ๐‘–๐‘– stores those vectors belonging to ๐น๐น, which have the same hash value, i.e., ๐ฟ๐ฟ๐‘–๐‘– = {๐‘ฅ๐‘ฅ โˆˆ ๐น๐น โ„Ž(๐‘ฅ๐‘ฅ) = ๐‘ฃ๐‘ฃ๐‘–๐‘–โ„ } or ๐ฟ๐ฟ๐‘–๐‘– = ๐ต๐ต๐‘–๐‘–โ‹‚๐น๐น, ๐‘–๐‘– = 1, โ€ฆ , ๐‘๐‘. Hash coding schemae is called balanced if |๐ต๐ต๐‘–๐‘–| = 2๐‘›๐‘› ๐‘๐‘โ„ . The Elias algorithm [2] considers blocks ๐ต๐ต๐‘–๐‘– ordering them by their distances at vector ๐‘ฅ๐‘ฅ. Mention that we must have an efficient method to find all blocks ๐ต๐ต๐‘—๐‘—1, ๐ต๐ต๐‘—๐‘—2, โ€ฆ , ๐ต๐ต๐‘—๐‘—๐‘ ๐‘ (๐‘—๐‘—) located at distance ๐‘—๐‘— from ๐‘ฅ๐‘ฅ if such blocks exist. After the step of ordering, the algorithm examines the lists ๐ฟ๐ฟ๐‘—๐‘—1, ๐ฟ๐ฟ๐‘—๐‘—2, โ€ฆ , ๐ฟ๐ฟ๐‘—๐‘—๐‘ ๐‘ (๐‘—๐‘—) one after another by increasing ๐‘—๐‘—๐‘ก๐‘ก. Let the best match distance be denoted by ๐›ฟ๐›ฟ (also the current value of the best match distance in the algorithm). Due to ๐น๐น โ‰  โˆ… initialization of ๐›ฟ๐›ฟ will happen in some step. Now, if the current values obey ๐›ฟ๐›ฟ < ๐‘—๐‘— algorithm stopes the work. All blocks with higher distances than ๐›ฟ๐›ฟ at ๐‘ฅ๐‘ฅ do not need to be examined. In the reminder case ๐›ฟ๐›ฟ โ‰ฅ ๐‘—๐‘—, examining the nonempty list ๐ฟ๐ฟ๐‘—๐‘—๐‘ก๐‘ก the algorithm can change the best match distance ๐›ฟ๐›ฟ, also refreshing the current best match set, or the ๐›ฟ๐›ฟ will remain unchanged and the current best match set will be updated. The pseudocode of the algorithm is brought below: Elias Algorithm // ๐‘›๐‘› is the word length, ๐‘๐‘ is the number of blocks input ๐‘ฅ๐‘ฅ, ๐น๐น, // ๐น๐น โ‰  โˆ… integer ๐›ฟ๐›ฟ = โˆž, // the current best match distance set ๐‘†๐‘† = โˆ…, // ๐‘†๐‘†-is the current set of vectors of ๐น๐น located at distance ๐›ฟ๐›ฟ from ๐‘ฅ๐‘ฅ integer ๐‘—๐‘— = โˆ’1, // current distance of blocks under consideration from ๐‘ฅ๐‘ฅ while(๐‘—๐‘— < ๐›ฟ๐›ฟ) { j++, if(๐‘ ๐‘ (๐‘—๐‘—) โ‰  0) // ๐‘ ๐‘ (๐‘—๐‘—) is the number of blocks located at distance ๐‘—๐‘— from ๐‘ฅ๐‘ฅ for(integer i=0, i ๐‘›๐‘›. Taking into account formulas (4) and (5) and the coset weight structures for considered codes, we may formulate the following: Proposition 1: The complexity of the algorithm for the hash function defined by [2๐‘š๐‘š โˆ’ 1, 2๐‘š๐‘š โˆ’ ๐‘š๐‘š โˆ’ 1,3]1 Hamming code โ„‹๐‘š๐‘š is: ฮฑ๏ฟฝhโ„‹m๏ฟฝ = 1 2m ๏ฟฝ V(j) ๏ฟฝ๏ฟฝ๏ฟฝAi โ„‹m + (2m โˆ’ 1)Ai e1+โ„‹m๏ฟฝ j+1 i=0 ๏ฟฝ 0โ‰คjโ‰ค2mโˆ’1 , (6) where by ๐‘๐‘๐‘–๐‘– is denoted any fixed vector of weight ๐‘–๐‘–. Proposition 2: For the Golay code ๐’ข๐’ข the complexity of the algorithm is: ๐›ผ๐›ผ๏ฟฝโ„Ž๐’ข๐’ข๏ฟฝ = ๏ฟฝ ๐‘‰๐‘‰(๐‘—๐‘—) 0โ‰ค๐‘—๐‘—โ‰ค23 ๏ฟฝ๏ฟฝ 1 211 ๐ด๐ด๐‘–๐‘– ๐’ข๐’ข + 23 211 ๐ด๐ด๐‘–๐‘– e1+๐’ข๐’ข + 253 211 ๐ด๐ด๐‘–๐‘– e2+๐’ข๐’ข + 5819 211 ๐ด๐ด๐‘–๐‘– e3+๐’ข๐’ข๏ฟฝ ๐‘—๐‘—+3 ๐‘–๐‘–=0 . (7) Complexity of Error-Correcting Code Based on Nearest Neighbor Search Algorithm 14 Proposition 3: For the code โ„‹๏ฟฝ๐‘š๐‘š the complexity of the algorithm is: ๐›ผ๐›ผ๏ฟฝโ„Žโ„‹๏ฟฝ๐‘š๐‘š๏ฟฝ = ๏ฟฝ ๐‘‰๐‘‰(๐‘—๐‘—) ๏ฟฝ๏ฟฝ๏ฟฝ 1 2๐‘š๐‘š+1 ๐ด๐ด๐‘–๐‘– โ„‹๏ฟฝ๐‘š๐‘š + 1 2 ๐ด๐ด๐‘–๐‘– e1+โ„‹๏ฟฝ๐‘š๐‘š + 2๐‘š๐‘š โˆ’ 1 2๐‘š๐‘š+1 ๐ด๐ด๐‘–๐‘– ๐‘ข๐‘ข+โ„‹๏ฟฝ๐‘š๐‘š๏ฟฝ ๐‘—๐‘—+2 ๐‘–๐‘–=0 ๏ฟฝ 0โ‰ค๐‘—๐‘—โ‰ค2๐‘š๐‘š , (8) where by ๐‘ข๐‘ข๐‘–๐‘– is denoted any fixed vector of weight 2, the first coordinate of which is equal to 1. Proposition 4: For two error correcting BCH code ๐”…๐”…๐‘š๐‘š of length 2๐‘š๐‘š โˆ’ 1 for odd ๐‘š๐‘š the complexity of the algorithm is: ๐›ผ๐›ผ๏ฟฝโ„Ž๐”…๐”…๐‘š๐‘š๏ฟฝ = ๏ฟฝ ๐‘‰๐‘‰(๐‘—๐‘—) 0โ‰ค๐‘—๐‘—โ‰ค2๐‘š๐‘šโˆ’1 ๏ฟฝ๏ฟฝ 1 22๐‘š๐‘š ๐ด๐ด๐‘–๐‘– ๐”…๐”…๐‘š๐‘š + 2๐‘š๐‘š โˆ’ 1 22๐‘š๐‘š ๐ด๐ด๐‘–๐‘– e1+๐”…๐”…๐‘š๐‘š + ๐‘—๐‘—+3 ๐‘–๐‘–=0 + (2๐‘š๐‘š โˆ’ 1)(2๐‘š๐‘šโˆ’1 โˆ’ 1) 22๐‘š๐‘š ๐ด๐ด๐‘–๐‘– e2+๐”…๐”…๐‘š๐‘š + 22๐‘š๐‘šโˆ’1 + 2๐‘š๐‘šโˆ’1 โˆ’ 1 22๐‘š๐‘š ๐ด๐ด๐‘–๐‘– e3+๐”…๐”…๐‘š๐‘š๏ฟฝ. (9) 5. Numeric Results Even having formulas, it is hard to imagine the practical complexities of things. To compare the results with those in [2], we provide numeric results for propositions 1 to 4 to demonstrate the complexity of the algorithm for each case of hash-coding schema. Table 1 demonstrates the formula (6) in cases of Hamming code of length 2๐‘š๐‘š โˆ’ 1 for ๐‘š๐‘š = 4. Table 2 demonstrates the formula (7) in case of Golay code. Tables 3 and 4 demonstrate the formula (8) in cases of extended Hamming code of length 2๐‘š๐‘š โˆ’ 1 for ๐‘š๐‘š = 4 and ๐‘š๐‘š = 5. Table 5 demonstrates the formula (9) in case of BCH codes of length 2๐‘š๐‘š โˆ’ 1 for ๐‘š๐‘š = 5. Table 1: Complexity of the algorithm in case of Hamming code of length 15. Subset generation probability ๐‘๐‘ Average number of considered blocks The percentage relation of considered elements and cardinality of subset 1 1 0.05 2-1 4.28 0.21 2-2 6.2 0.3 2-3 10.1 0.49 2-4 17.31 0.85 2-5 26.3 1.28 2-6 42.27 2.06 2-7 67.67 3.3 2-8 107.23 5.24 2-9 170.38 8.32 2-10 268.45 13.11 2-11 418.26 20.42 2-12 638.09 31.16 2-13 901.17 44.0 2-14 1001.82 48.92 2-15 823.24 40.2 L. Aslanyan and H. Danoyan 15 Table 2: Complexity of the algorithm in case of Golay code of length 23 Subset generation probability ๐‘๐‘ Average number of considered blocks The percentage relation of considered elements and cardinality of subset 1 1 0.02 2-1 3.16 0.08 2-2 4.26 0.10 2-3 5.45 0.13 2-4 8.54 0.21 2-5 12.86 0.31 2-6 17.14 0.42 2-7 24.51 0.6 2-8 36.97 0.90 2-9 51.85 1.27 2-10 75.16 1.83 2-11 109.80 2.68 2-12 157.04 3.83 2-13 227.57 5.55 2-14 325.28 7.94 2-15 463.76 11.32 2-16 654.12 15.97 2-17 911.53 22.25 2-18 1249.29 30.50 2-19 1674.63 40.88 2-20 2176.78 53.14 Table 3: The case of extended Hamming code of length ๐‘›๐‘› = 16. Subset generation probability p Average number of considered blocks The percentage relation of considered elements and cardinality of subset 1 4.28 0.89 2-1 13.03 2.72 2-2 17.83 3.72 2-3 25.47 5.32 2-4 39.69 8.29 2-5 56.14 11.73 2-6 80.80 16.89 2-7 119.08 24.89 2-8 171.14 35.77 2-9 247.85 51.81 2-10 354.80 74.17 2-11 502.63 105.07 Complexity of Error-Correcting Code Based on Nearest Neighbor Search Algorithm 16 2-12 699.58 146.24 2-13 947.74 198.12 2-14 1196.9 250.20 2-15 1235.31 258.23 2-16 977.51 204.34 Table 4: The case of extended Hamming code of length n=32. Subset generation probability p Average number of considered blocks The percentage relation of considered elements and cardinality of subset 1 8.26 0.0001 2-1 47.01 0.0005 2-2 66.43 0.0008 2-3 82.93 0.001 2-4 147.70 0.001 2-5 280.41 0.003 2-6 419.46 0.005 2-7 568.55 0.007 2-8 976.12 0.012 2-9 1731.29 0.02 2-10 2572.65 0.03 2-11 4038.7 0.04 2-12 7117.07 0.08 2-13 11173.6 0.13 2-14 18011.1 0.22 2-15 30662.2 0.37 2-16 48773 0.6 2-17 81535.8 1.00 2-18 133110 1.63 2-19 218976 2.69 2-20 358907 4.42 2-21 587880 7.24 2-22 957978 11.79 2-23 1.55722โˆ™106 19.17 2-24 2.511422โˆ™106 30.16 2-25 4.0295โˆ™106 49.63 2-26 6.3936โˆ™106 78.74 2-27 1.0009โˆ™107 123.27 2-28 1.53811โˆ™107 189.44 2-29 2.29847โˆ™107 283.09 2-30 3.16976โˆ™107 390.41 2-31 3.4639โˆ™107 462.64 2-32 2.82105โˆ™107 347.46 L. Aslanyan and H. Danoyan 17 Table 5: The case of two error correcting BCH code of length n=31. Subset generation probability ๐‘๐‘ Average number of considered blocks The percentage relation of considered elements and cardinality of subset 1 4.87 0.001 2-1 20.23 0.004 2-2 27.93 0.006 2-3 34.07 0.007 2-4 54.72 0.01 2-5 94.71 0.02 2-6 135.65 0.03 2-7 179.04 0.04 2-8 284.66 0.06 2-9 463.67 0.10 2-10 658.39 0.15 2-11 987.25 0.22 2-12 1597.11 0.37 2-13 2363.61 0.54 2-14 3624.62 0.84 2-15 5683.15 1.32 2-16 8556.05 1.98 2-17 13333.3 3.09 2-18 20290.5 4.71 2-19 31196.3 7.25 2-20 47458 11.03 2-21 72165.5 16.77 2-22 108815 25.29 2-23 162915 37.87 2-24 241404 56.11 2-25 353024 82.06 2-26 507518 117.977 2-27 713305 165.813 Complexity of Error-Correcting Code Based on Nearest Neighbor Search Algorithm 18 2-28 971293 225.785 2-29 1.22855โˆ™106 285.587 2-30 1.26797โˆ™106 294.749 2-31 1.00312โˆ™106 233.184 6. Conclusion The Nearest Neighbor search algorithm considered in this paper is well known (Elias algorithm). It uses hash-coding schemas for data preprocessing. These schemas partition the space into non- intersecting blocks of the same cardinality. It is known that the algorithm is optimal when these blocks are spheres. Such partitions may be obtained by error-correcting codes. The algorithm is considered for the cases of perfect codes, so the spheres and, consequently, the lists do not intersect. As such codes exist for a limited set of parameters, the algorithm is considered for some other generalizations of perfect codes, and then the same data point may be contained in different lists. A formula of time complexity of the algorithm is obtained for these cases. These formulas show the area of practical use of the algorithm: the algorithm encounters โ€œthe course of dimensionalityโ€, i.e., as the word length grows, the algorithm turns into an exhaustive search in a file. References [1] D. E. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching, second edition, Eddison-Wesley, 1998. [2] R. Rivest, โ€œOn the optimality of Eliasโ€™s algorithm for performing best-match searchesโ€, Information Processing, pp. 678โ€“681, 1974. [3] L. H. Aslanyan and H. E. Danoyan, โ€œOn the optimality of the hash-coding type nearest neighbour search algorithmโ€, Selected works of 9th CSIT conference, pp. 1-6, 2013. [4] F. J. Mac-Williams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, The Netherlands: North-Holland, 1986. [5] V. A. Zinoviev and V. K. Leontโ€™ev, โ€œThe nonexistence of perfect codes over Galois fieldsโ€, Problems of Control and Information Theory, vol. 2, no. 2, pp. 123-132, 1973. [6] L. A. Bassalygo, G. V. Zaitsevand V. A. Zinoviev, โ€œUniformly packed codesโ€, Problemy Peredachi Informatsii, vol. 10, no. 1, pp. 9-14, 1974. [7] T. Baicheva, I. Bouyukliev and S. Dodunekov, โ€œBinary and ternary linear quasi- perfect codes with small dimensionsโ€, IEEE Transactions of Information Theory, vol. 54, no. 9, pp. 4335-4339, 2008. [8] E. M. Gabidulin, A. A. Davydov and L. M. Tombak, โ€œLinear codes with covering radius 2 and other new covering codes,โ€ IEEE Transactionsof Information Theory, vol. 37, no. 1, pp. 219โ€“224, 1991. L. Aslanyan and H. Danoyan 19 [9] A. A. Davydov and A. Yu. Drozhzhina-Labinskaya, โ€œConstructions, families, and tables of binary linear covering codes,โ€ IEEE Transactions of Information Theory, vol. 40, no. 4, pp. 1270โ€“1279, Jul. 1994. [10] T. Etzion and B. Mounits, โ€œQuasi-perfect codes with small distanceโ€, IEEE Trans. Inform. Theory, vol. 51, no. 11, pp. 3938-3946, 2005. [11] T. Etzion and G. Greenberg, โ€œConstructions for perfect mixed codes and other covering codes,โ€ IEEE Transactions of Information.Theory, vol. 39, no. 1, pp. 209โ€“ 214, 1993. [12] D. Gorenstein, W. Peterson and N. Zierler, โ€œTwo error-correcting bose-chaudhuri codes are quasi perfectโ€, Information and Control, no. 3, pp. 291-294, 1960. [13] T. Kasami, S. Lin and W. Peterson, โ€œSome results on the weight distributions of BCH codesโ€, IEEE Trans. Information Theory, vol. 12, no. 2, pp. 274-277, 1966. [14] P. Charpin โ€œWeight distributions of cosets of two-error-correcting BCH codes, extended or notโ€, IEEE Transactions of Information.Theory, vol. 40, no. 5, pp. 1425โ€“ 1442, 1991. Submitted 18.02.2019, accepted 15.04.2019. ีีญีกีฌ ีธึ‚ีฒีฒีธีฒ ีฏีธีคีฅึ€ีซ ีพึ€ีก ีฐีซีดีถีพีกีฎ ีดีธีฟีกีฏีก ีฐีกึ€ึ‡ีกีถีถีฅึ€ีซ ึƒีถีฟึ€ีดีกีถ ีกีฌีฃีธึ€ีซีฉีดีซ ีขีกึ€ีคีธึ‚ีฉีตีธึ‚ีถีจ ิผึ‡ีธีถ ี€. ิฑีฝีฌีกีถีตีกีถ ึ‡ ี€ีกีตีฏ ิท. ิดีกีถีธีตีกีถ ี€ี€ ิณิฑิฑ ิปีถึ†ีธึ€ีดีกีฟีซีฏีกีตีซ ึ‡ ีกีพีฟีธีดีกีฟีกึีดีกีถ ีบึ€ีธีขีฌีฅีดีถีฅึ€ีซ ีซีถีฝีฟีซีฟีธึ‚ีฟ e-mail: lasl@sci.am, hed@ipia.sci.am ิฑีดึƒีธึƒีธึ‚ีด ี€ีกีตีฟีถีซ ีง ีดีธีฟีกีฏีก ีฐีกึ€ึ‡ีกีถีถีฅึ€ีซ ึƒีถีฟึ€ีดีกีถ ีฐีกีท-ีฏีธีคีกีพีธึ€ีดีกีถ ีฟีซีบีซ ิทีฌีซีกีฝีซ ีกีฌีฃีธึ€ีซีฉีดีจ: ิฑีฌีฃีธึ€ีซีฉีดีธึ‚ีด ีฏีกึ€ีธีฒ ีฅีถ ีฏีซึ€ีกีผีพีฅีฌ ีฝีญีกีฌ ีธึ‚ีฒีฒีธีฒ ีฏีธีคีฅึ€ีจี ีฐีกีท- ีฏีธีคีกีพีธึ€ีดีกีถ ีฝีญีฅีดีก ีฏีกีผีธึ‚ึีฅีฌีธึ‚ ีฐีกีดีกึ€: ิฑีตีค ีฝีญีฅีดีกีถีฅึ€ีจ ีฟีพีตีกีฌีถีฅึ€ีจ ีถีฅึ€ีฏีกีตีกึีถีธึ‚ีด ีฅีถ ึีธึ‚ึีกีฏีถีฅึ€ีซ ีฟีฅีฝึ„ีธีพ: ิฟีกีดีกีตีกีฏีกีถ ึีธึ‚ึีกีฏ ีซึ€ีฅีถีซึ ีถีฅึ€ีฏีกีตีกึีถีธึ‚ีด ีง ีธึ€ึ‡ีง ีฃีถีคีซ ีฅีถีฉีกีขีกีฆีดีธึ‚ีฉีตีธึ‚ีถ (ี€ีฅีดีซีถีฃีซ ีฟีกึ€ีกีฎีธึ‚ีฉีตีธึ‚ีถีธึ‚ีด), ีธึ€ีซ ีฏีฅีถีฟึ€ีธีถีจ ีถีทีพีกีฎ ีฝีญีกีฌ ีธึ‚ีฒีฒีธีฒ ีฏีธีคีซ ีฏีธีคีกีตีซีถ ีขีกีผ ีง: ิฑีฌีฃีธึ€ีซีฉีดีจ ีคีซีฟีกึ€ีฏีพีธึ‚ีด ีง ีฏีกีฟีกึ€ีตีกีฌ ีฏีธีคีฅึ€ีซ ีฐีกีดีกึ€, ีฐีฅีฟึ‡ีกีขีกึ€ ีฏีธีคีกีตีซีถ ีขีกีผีฅึ€ีซ ีทีธึ‚ึ€ีป ีฐีกีดีกีบีกีฟีกีฝีญีกีถ ีทีกีผีกีพีฒีธีพ ีฃีถีคีฅึ€ีจ ีนีฅีถ ีฐีกีฟีพีธึ‚ีด, ีฐีฅีฟึ‡ีกีขีกึ€ ีถีทีพีกีฎ ึีธึ‚ึีกีฏีถีฅึ€ีจ ีถีธึ‚ีตีถีบีฅีฝ ีนีฅีถ ีฐีกีฟีพีซ: ี”ีกีถีซ ีธึ€ ีฏีกีฟีกึ€ีตีกีฌ ีฏีธีคีฅึ€ ีฃีธีตีธึ‚ีฉีตีธึ‚ีถ ีธึ‚ีถีฅีถ ีบีกึ€ีกีดีฅีฟึ€ีฅึ€ีซ ีฝีบีฅึีซึ†ีซีฏ ีกึ€ีชีฅึ„ีถีฅึ€ีซ ีฐีกีดีกึ€, ีกีฌีฃีธึ€ีซีฉีดีจ ีคีซีฟีกึ€ีฏีพีฅีฌ ีง ีฏีกีฟีกึ€ีตีกีฌ ีฏีธีคีฅึ€ีซ ีกีตีฌ ีจีถีคีฐีกีถึ€ีกึีธึ‚ีดีถีฅึ€ีธีพ ีฝีฟีกึีพีธีฒ ีฐีกีท- ีฏีธีคีกีพีธึ€ีดีกีถ ีฝีญีฅีดีกีถีฅึ€ีซ ีฐีกีดีกึ€, ีธึ€ีฟีฅีฒ, ีฝีกีฏีกีตีถ, ีดีซึ‡ีถีธึ‚ีตีถ ีงีฌีฅีดีฅีถีฟีจ ีฏีกึ€ีธีฒ ีง ีบีกีฟีฏีกีถีฅีฌ ีดีซ ึ„ีกีถีซ ึีธึ‚ึีกีฏีถีฅึ€ีซ: ี†ีทีพีกีฎ ีคีฅีบึ„ีฅึ€ีซ ีฐีกีดีกึ€ ีฝีฟีกึีพีฅีฌ ีฅีถ ีกีฌีฃีธึ€ีซีฉีดีซ Complexity of Error-Correcting Code Based on Nearest Neighbor Search Algorithm 20 ีขีกึ€ีคีธึ‚ีฉีตีกีถ ีขีกีถีกีฑึ‡ีฅึ€ีจี ีฏีกีญีพีกีฎ ีฏีธีคีซ ีฐีกึ€ีกีฏีซึ ีคีกีฝีฅึ€ีซ ีฏีทีผีกีตีซีถ ีฏีกีผีธึ‚ึีพีกีฎึ„ีถีฅึ€ีซึ: ิฒีกีถีกีฌีซ ีขีกีผีฅึ€` ีดีธีฟีกีฏีก ีฐีกึ€ึ‡ีกีถีถีฅึ€ีซ ึƒีถีฟึ€ีธึ‚ีด, ีฌีกีพีกีฃีธึ‚ีตีถ ีฐีกีดีจีถีฏีถีธึ‚ีดีถีฅึ€ีซ ึƒีถีฟึ€ีธึ‚ีด, ีฐีกีท-ีฏีธีคีกีพีธึ€ีดีกีถ ีฝีญีฅีดีก, ีฏีกีฟีกึ€ีตีกีฌ ีฏีธีคีฅึ€, ีฐีกีพีกีฝีกึ€ีกีนีกึƒ ึƒีกีฉีฅีฉีกีพีธึ€ีพีกีฎ ีฏีธีคีฅึ€, ึ„ีพีกีฆีซีฏีกีฟีกึ€ีตีกีฌ ีฏีธีคีฅึ€ ะกะปะพะถะฝะพัั‚ัŒ ะฐะปะณะพั€ะธั‚ะผะฐ ะฟะพะธัะบะฐ ะฑะปะธะถะฐะนัˆะธั… ัะพัะตะดะตะน ั ะบะพะดะฐะผะธ ะธัะฟั€ะฐะฒะปััŽั‰ะธะผะธ ะพัˆะธะฑะบะธ ะ›ะตะฒะพะฝ ะ. ะัะปะฐะฝัะฝ ะธ ะะนะบ ะญ. ะ”ะฐะฝะพัะฝ ะ˜ะฝัั‚ะธั‚ัƒั‚ ะฟั€ะพะฑะปะตะผ ะธะฝั„ะพั€ะผะฐั‚ะธะบะธ ะธ ะฐะฒั‚ะพะผะฐั‚ะธะทะฐั†ะธะธ ะะะ ะ ะ e-mail: lasl@sci.am, hed@ipia.sci.am ะะฝะฝะพั‚ะฐั†ะธั ะ˜ะทะฒะตัั‚ะตะฝ ะฐะปะณะพั€ะธั‚ะผ ะฟะพะธัะบะฐ ะฑะปะธะถะฐะนัˆะธั… ัะพัะตะดะตะน (ะฐะปะณะพั€ะธั‚ะผ ะญะปะธะฐัะฐ). ะะปะณะพั€ะธั‚ะผ ะธัะฟะพะปัŒะทัƒะตั‚ ะบะพะดั‹, ะธัะฟั€ะฐะฒะปััŽั‰ะธะต ะพัˆะธะฑะบะธ ะดะปั ะฟะพัั‚ั€ะพะตะฝะธั ัั…ะตะผ ั…ะตัˆ-ะบะพะดะธั€ะพะฒะฐะฝะธั. ะญั‚ะธ ัั…ะตะผั‹ ะฟั€ะตะดัั‚ะฐะฒะปััŽั‚ ะดะฐะฝะฝั‹ะต ะฒ ั„ะพั€ะผะต ัะฟะธัะบะพะฒ. ะšะฐะถะดั‹ะน ัะฟะธัะพะบ ัะพะดะตั€ะถะธั‚ัั ะฒ ะฝะตะบะพั‚ะพั€ะพะน ัั„ะตั€ะต, ั†ะตะฝั‚ั€ะพะผ ะบะพั‚ะพั€ะพะณะพ ัะฒะปัะตั‚ัั ะฝะตะบะพั‚ะพั€ะพะต ะบะพะดะพะฒะพะต ัะปะพะฒะพ. ะะปะณะพั€ะธั‚ะผ ั€ะฐััะผะฐั‚ั€ะธะฒะฐะตั‚ัั ะดะปั ัะปัƒั‡ะฐะตะฒ ัะพะฒะตั€ัˆะตะฝะฝั‹ั… ะบะพะดะพะฒ, ะฟะพัั‚ะพะผัƒ ัƒะบะฐะทะฐะฝะฝั‹ะต ัั„ะตั€ั‹ ะธ, ัะปะตะดะพะฒะฐั‚ะตะปัŒะฝะพ, ัะฟะธัะบะธ ะฝะต ะฟะตั€ะตัะตะบะฐัŽั‚ัั. ะŸะพัะบะพะปัŒะบัƒ ัะพะฒะตั€ัˆะตะฝะฝั‹ะต ะบะพะดั‹ ััƒั‰ะตัั‚ะฒัƒัŽั‚ ะดะปั ะพั‡ะตะฝัŒ ัะฟะตั†ะธั„ะธั‡ะฝะพะณะพ ะฝะฐะฑะพั€ะฐ ะฟะฐั€ะฐะผะตั‚ั€ะพะฒ, ะฐะปะณะพั€ะธั‚ะผ ั€ะฐััะผะฐั‚ั€ะธะฒะฐะตั‚ัั ะดะปั ะฝะตะบะพั‚ะพั€ั‹ั… ะพะฑะพะฑั‰ะตะฝะธะน ัะพะฒะตั€ัˆะตะฝะฝั‹ั… ะบะพะดะพะฒ, ะบะพะณะดะฐ ะพะดะฝะฐ ะธ ั‚ะฐ ะถะต ั‚ะพั‡ะบะฐ ะดะฐะฝะฝั‹ั… ะผะพะถะตั‚ ัะพะดะตั€ะถะฐั‚ัŒัั ะฒ ั€ะฐะทะฝั‹ั… ัะฟะธัะบะฐั…. ะ”ะปั ัƒะบะฐะทะฐะฝะฝั‹ั… ัะปัƒั‡ะฐะตะฒ ะฟะพะปัƒั‡ะตะฝั‹ ั„ะพั€ะผัƒะปั‹ ะฒั€ะตะผะตะฝะฝะพะน ัะปะพะถะฝะพัั‚ะธ ะฐะปะณะพั€ะธั‚ะผะฐ ั ะธัะฟะพะปัŒะทะพะฒะฐะฝะธะตะผ ะฒะตัะพะฒะพะน ัั‚ั€ัƒะบั‚ัƒั€ั‹ ัะผะตะถะฝั‹ั… ะบะปะฐััะพะฒ ะบะพะดะพะฒ. ะšะปัŽั‡ะตะฒั‹ะต ัะปะพะฒะฐ: ะฟะพะธัะบ ะฑะปะธะถะฐะนัˆะธั… ัะพัะตะดะตะน, ะฟะพะธัะบ ะฝะฐะธะปัƒั‡ัˆะธั… ัะพะฒะฟaะดะตะฝะธะน, ัั…ะตะผั‹ ั…ะตัˆ-ะบะพะดะธั€ะพะฒะฐะฝะธั, ัะพะฒะตั€ัˆะตะฝะฝั‹ะต ะบะพะดั‹, ั€ะฐะฒะฝะพะผะตั€ะฝะพ ัƒะฟะฐะบะพะฒะฐะฝะฝั‹ะต ะบะพะดั‹, ะบะฒะฐะทะธัะพะฒะตั€ัˆะตะฝะฝั‹ะต ะบะพะดั‹