Microsoft Word - 10_Zaslavski.doc Mathematical Problems of Computer Science 39, 81--87, 2013. 81 On the Comparative Complexity of Primitive Recursive Arithmetical and String Functions1 Igor D. Zaslavsky and Mikayel H. Khachatryan Institute for Informatics and Automation Problems of NAS RA e-mail: zaslav@ipia.sci.am, mikayel.khachatur@gmail.com Abstract Formal languages LA and LW are introduced as in [1] for the representation of primitive recursive arithmetical and string functions. Shannon functions SHAW and SHWA describing the relations between the complexities of functions representations in these languages are defined as in [1]. A new proof of the upper bounds for SHAW is presented; it is based on a new method giving in some cases new possibilities for applications in comparison with the methods considered in [1]. Keywords: string function, arithmetical function, term, alphabetic enumeration, Shannon function, primitive recursive function. Investigations described in this paper may be considered as the continuation of those presented in [1]. Let us recall definitions of some notions given in [1]. We suppose that an alphabet 1 2{ , ,..., },pA a a a where 1,p  is fixed. The set of all strings in this alphabet (including the empty string  ) is denoted by A*; the set of all k-tuples 1 2( , ,..., ),kQ Q Q where * iQ A for 1 ,i k  will be denoted by *( ) .kA The set of all non-negative integers {0, 1, 2, ... } will be denoted by N; the set of all k-tuples 1 2( , ,..., ),kx x x where ix N for 1 ,i k  will be denoted by .kN k-dimensional string function in A is defined ( [1], [2] ) as a mapping of *( )kA into A*; k- dimensional arithmetical function is defined as a mapping of ( )kN into N. Primitive recursive string functions in A as well as primitive recursive arithmetical functions are defined in a usual way as in [1] and [2]. The alphabetic enumeration of the set A* is defined as in [1] and [2]; let us recall that this enumeration defines a one-to-one correspondence between the sets A* and N. The non-negative integer, corresponding to a string Q in the alphabetic enumeration is denoted by ( ).Q The string in A* corresponding to the number n in this enumeration is denoted by ( )p n or .n The length of a string Q is denoted by .Q All these notations are used in [1]. The alphabetic enumeration of strings gives also a one-to-one correspondence between n- dimensional string functions in A, and n-dimensional arithmetical functions. 1 This work is supported by the grant 11-1b 189 of the Government of the Republic of Armenia. On the Comparative Complexity of Primitive Recursive Arithmetical and String Functions 82 Namely, we say ( [1], [2] ) that an n-dimensional arithmetical function f represents an n- dimensional string function F, if 1 2 1 2( , , ... , ) ( , , ... , )n nF x x x f x x x    for all 1 2, ,..., nx x x in N. In this case we say also that F and f correspond to one another. The mentioned correspondence gives also a one-to-one correspondence between primitive recursive string functions in A and primitive recursive arithmetical functions ( [1], [2] ). In [1] the formal languages LA and LW are introduced for the representation of primitive recursive arithmetical functions and primitive recursive string functions. The formal expressions in these languages are said to be terms; by t LA and r LW we denote the statements “t is a term in LA”, “r is a term in LW”. In the definition of LA the symbols S and R are used for the operators of superposition and primitive recursion of arithmetical functions; in the definition of LW the symbols S and R are used for the operators of superposition and alphabetic primitive recursion of string functions ( [1], [2] ). Special notations for some modifications of the mentioned operators ( Sbl, Sbr, Sel, Ser, Sb, Se in LA; Sbl, Sbr, Sel, Ser, Sb, Se in LW) are also included in LA and LW ([1]). We shall consider below special cases of the implementation of the modifications Sb and Se of the operator S (see [1]); these cases are described in the following points (1), (2), (3). Let us note that all the terms considered in (1), (2), (3) are terms in the language LW. (1) If f and g are terms expressing correspondingly a v  dimensional function f (where 2v  ) and a one-dimensional function g, then the term ( , )f g Se expresses the v  dimensional function h such that 1 2 1 2 1( , ,..., ) ( , ,..., , ( ))v v vh Q Q Q f Q Q Q g Q for all values of the variables 1 2, , ... , .vQ Q Q (2) If f and g are terms expressing correspondingly a 2-dimensional function f and a k-dimensional function g (where 1k  ), then the term ( , )f g Sb expresses the (k+1)- dimensional function h such that 1 2 1 1 2 1( , ,..., ) ( ( , ,..., ), )k k kh Q Q Q f g Q Q Q Q  for all values of the variables 1 2 1, , ... , .kQ Q Q  (3) If 1 2, ,f g g   are terms expressing correspondingly a v  dimensional function f (where 2v  ) and one-dimensional functions 1g and 2 ,g then the term 1 2( , , )f g g  Sb expresses the ( 1)v  dimensional function h such that 1 2 1 1 1 2 1 2 1( , ,..., ) ( ( ), ( ), ,..., )v vh Q Q Q f g Q g Q Q Q  for all values of the variables 1 2 1, , ... , .vQ Q Q  As it will be seen below, it is convenient to represent the list of variables for the function h in the following form: 3 4, , ,... , .vR Q Q Q Using this list, we can write the expression for h as follows: 3 4 1 2 3 4( , , ,... , ) ( ( ), ( ), , ,..., ).v vh R Q Q Q f g R g R Q Q Q In [1] Shannon functions ( )AWSH n and ( )WASH n are introduced; these functions describe the relations between the lengths of terms expressing arithmetical functions (in LA) and string functions (in LW) when the considered functions correspond to one another. Namely, if t LW , then by ( )LA t we denote the set of all terms in LA expressing the arithmetical function corresponding to the string function expressed by t. Similarly, if r LA , then by ( )LW r we denote the set of all terms in LW expressing the string function corresponding to the arithmetical function expressed by r. Now we can give (see [1]) the definitions of ( )AWSH n and ( )WASH n as follows: I. Zaslavski and M. Khachatryan 83  ( )( )&( )( ) max minWA r LA tt LW t nSH n r  ;  ( )( )&( )( ) max min .AW t LW rr LA r nSH n t  In [1] the following statement is established (see the main theorem in [1]): there are upper and lower bounss for ( )AWSH n and ( )WASH n such that each of them has the form ,cn d where c and d are some constants. We shall consider the function ( ).AWSH n There are some defects in the proof of the upper bouns for this function in [1]; their removal requires essential changes in the proof. Below we give another proof of the mentioned bouns based on a method which is different from those used in [1]. Namely, we shall give a new proof of the following theorem. Theorem. There are constants c and d such that for any non-negative integer n   .AWSH n cn d  We shall use three Lemmas in the proof given in [1] (similar statements are proved also in [2]). By ( )n we denote the function such that (0) ,   1 1 1( ) ... n n a a a   times for any positive integer n. Lemma 1. There are constants c and d such that for any term t LA expressing a function 1 2( , ,..., ),mx x x a term LW expressing some function 1 2( , ,..., )mQ Q Q can be constructed such that the following conditions are satisfied: 1. 1 2 1 2( ( ), ( ),..., ( )) ( ( , ,..., )),m mx x x x x x      for any 1 2, ,..., mx x x in N. 2. ' '.c t d   Lemma 2. There is a primitive recursive string function G such that   G m m  for any .m N Lemma 3. The one-dimensional string function  ( ) ( )Q Q   is primitive recursive. Proof of Theorem. Let t be any term in LA expressing some function 1 2( , , ... , ).mx x x As it is proved in [1], the following inequality holds: .m t The string function corresponding to  let us denote by 1 2( , , ... , ).mQ Q Q We shall construct a term  in LW having the length mentioned in Theorem and expressing the function . Using Lemma 1 we construct a term Φ in LA such that ,c t d    where c and d are constants (fixed in Lemma 1), and Φ expresses a function  satisfying the condition 1 2 1 2( ( ), ( ),..., ( )) ( ( , ,..., ))m mx x x x x x      for any 1 2, ,..., mx x x in N. Using Lemmas 1 and 2 we obtain the following equalities               1 2 1 2 1 2 1 2 1 2 ( , ... ) ( ( ), ( )... ( )) ( ( ), ( )... ( )) ( ) , ( ) ... ( ) ( ), ( )... ( ) , m m m m m Q Q Q Q Q Q G Q Q Q G Q Q Q G Q Q Q                             By G and  we denote the terms in LW expressing the functions G and . Let us consider the well-known primitive recursive arithmetical functions c, l, r, defining a one-to-one correspondence between 2N and N. Such functions we define by the following equalities: On the Comparative Complexity of Primitive Recursive Arithmetical and String Functions 84 ( )( 1) ( , ) , 2 x y x y c x y x      ( ( ), ( )) , ( ( , )) , ( ( , )) . c l z r z z l c x y x r c x y y    We consider also the following functions (where 2, 2n k n   ): 1 2 1 2 3 ( 1) times ( 1) times 1 ( ) times ( , ,..., ) (... ( ( , ), ),..., ); ( ) ( (... ( )...)); ( ) ( ( (... ( )...))). n n n n n n n k nk c x x x c c c x x x x c z l l l z c z r l l l z          Obviously, for any 1 2, ,..., ,nx x x z in N and for 1 ,k n  the following equalities hold: 1 2 1 2 ( ( ), ( ),..., ( )) ; ( ( , ,..., )) . n n n nn n nk n k c c z c z c z z c c x x x x   Using Lemma 1 we construct string functions , ,    , such that for any x, y, z in N ( ( ), ( )) ( ( , )); ( ( )) ( ( )); ( ( )) ( ( )). x y c x y z l z z r z              Let us note a peculiarity of these functions. If some strings 1 2, , Q Q Q in A do not contain other letters except 1.a then the following equalities hold: 1 2 1 1 2 2( ( ), ( )) , ( ( , )) , ( ( , )) .Q Q Q Q Q Q Q Q Q         However, in general such equalities are not valid. Let us consider also the following string functions (where 2, 2n k n   ) 1 2 1 2 3 ( 1) times 1 ( ) times ( , ,..., ) (... ( ( , ), ),..., ); ( ) ( (... ( )...)); ( ) ( ( (... ( )...))). n n n n n n k nk Q Q Q Q Q Q Q Q Q Q Q                     The terms in LW expressing the functions 1, , , , , n n nk      (where 2, 2n k n   ) we denote, correspondingly, by 1, , , , , . n n nk         If some strings 1 2, , ... , nQ Q Q Q in A do not contain other letters except 1.a then the following equalities hold (where 2, 2n k n   ): 1 2 1 1 2 1 1 2 ( ( ), ( ),..., ( )) , ( ( , ,..., )) ; ( ( , ,..., )) . n n n nn n n n n nk n k Q Q Q Q Q Q Q Q Q Q Q Q            In general such equalities are not valid. Now in the case, when 2m  , let us construct the term m as follows: ( 1) times ( 2) times ( ( ,..., ( ( , ) , ))..., )) , ). m m m                 Se Sb Se Sb I. Zaslavski and M. Khachatryan 85 Here the group of symbols ( ( ,Se Sb is repeated (m-1) times; after this the group ) is repeated once; after this the group , )) is repeated (m-2) times; finally, the group , ) is repeated once. It is easily seen that the length of the term m does not exceed 10 10 ,c m d where 10c and 10d are some constants. Let us consider some subterms of the term m as well as functions expressed by them. It is easily seen that the following statements are valid. The term ( , ) Sb expresses the function  1 2( ), .Q Q  The term 2 ( ( , ), )     Se Sb expresses the function  1 2( ), ( ) ,Q Q   that is, the function  2 1 2( ), ( ) .Q Q   The term ( , ( ( , ), ))     Sb Se Sb expresses the function   1 2 3( ), ( ) , .Q Q Q    The term 3 ( ( , ( ( , ), )), )         Se Sb Se Sb expresses the function   1 2 3( ), ( ) , ( ) ,Q Q Q     that is, the function  3 1 2 3( ), ( ), ( ) .Q Q Q    Using similar considerations, we conclude that the term m expresses the function 1 2 3(... ( ( ( ), ( )), ( )),..., ( )),mQ Q Q Q       that is, the function 1 2 3( ( ), ( ), ( ),..., ( )). m mQ Q Q Q     Further, let us construct the term m (where 1m  ) as follows: ( 1) times( 1) times ( ( ( , , ), , )..., , ). mm m                Sb ...Sb Sb It is easily seen that the length of the term m does not exceed 11 11,c m d   where 11c and 11d are some constants. Using the inequalities c t d    and m t we conclude that the length m does not exceed 12 12 ,c t d where 12c and 12d are some constants. Let us consider some subterms of the term m , as well as functions expressed by them. It is easily seen that the following statements are valid. As it is said above, the term  expresses the function  depending on m variables. The function  we denote also by 0 . The term 1 is defined as the term which is equal to . The term 2 ( , , )     Sb expresses some function 1 depending on ( 1)m  variables; the list of variables for this function we denote by 1 3, ,..., .mR Q Q Using such notations we can represent the equality describing the function 1 1 3( , ,..., )mR Q Q as follows: 1 1 3 1 1 3( , ,..., ) ( ( ), ( ), ,..., ),m mR Q Q R R Q Q    that is 1 1 3 21 1 22 1 3( , ,..., ) ( ( ), ( ), ,..., ).m mR Q Q R R Q Q    The term 3 ( ( , , ), , )        Sb Sb expresses the function 2 2 4 5( , , ,..., )mR Q Q Q depending on ( 2)m  variables; the equality describing this function can be represented as follows: 2 2 4 5 2 2 2 4 5( , , ,..., ) ( ( ( )), ( ( )), ( ), , ,..., ),m mR Q Q Q R R R Q Q Q       that is 2 2 4 5 31 2 32 2 33 2 4 5( , , ,..., ) ( ( ), ( ), ( ), , ,..., ).m mR Q Q Q R R R Q Q Q     On the Comparative Complexity of Primitive Recursive Arithmetical and String Functions 86 The term 4 ( ( ( , , ), , ), , )            Sb Sb Sb expresses the function 3 3 5 6( , , ,..., )mR Q Q Q depending on ( 3)m  variables; the equality describing this function can be represented as follows: 3 3 5 6 3 3 3 3 5 6( , , ,..., ) ( ( ( ( ))), ( ( ( ))), ( ( )), ( ), , ,..., ),m mR Q Q Q R R R R Q Q Q           that is 3 3 5 6 41 2 42 2 43 2 44 2 5 6( , , ,..., ) ( ( ), ( ), ( ), ( ), , ,..., ).m mR Q Q Q R R R R Q Q Q      Using similar considerations, we conclude that the term m expresses the function ( 1)m  depending on one variable (we shall denote this variable by ( 1)mR  ). The equality describing this function can be represented as follows:  ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 2)( 1) ( 2) ( ) ( ( (... ( )...)) , ( ( (... ( )...))),..., ( )),m m m m m m mm m R R R R                    that is ( 1) ( 1) 1 ( 1) 2 ( 1) ( 1)( ) ( ( ), ( ),..., ( )).m m m m m m mm mR R R R         Now let us construct the term ( , ).m m S This term expresses the function 1 1 2 2 1 2 1 2 ( ( ( ( ), ( ),..., ( ))), ( ( ( ), ( ),..., ( ))),... ..., ( ( ( ), ( ),..., ( )))). m m m m m m m mm m Q Q Q Q Q Q Q Q Q                 But the strings 1 2( ), ( ),..., ( )mQ Q Q   do not contain other letters except 1.a So, we can conclude that the function expressed by ( , ),m m S is equal to 1 2( ( ), ( ),..., ( )).mQ Q Q    Hence the term ( , ( , ))m mG   S S expresses the function 1 2( ( ( ), ( ),..., ( ))),mG Q Q Q    that is, the function 1 2( , ,..., ).mQ Q Q Clearly, 13 13 ,c t d   where 13c and 13d are some constants. So, the statement of Theorem is proved for 2.m  The cases 1m  and 0m  are considered in a similar way. This completes the proof of Theorem. Note. Applying usual methods of the recursive functions theory, we can obtain essentially more simple and more natural expressions for the term  than those considered above, for example 1 2( , ( , ( , ), ( , ),..., , ( , ))), m m m mG I I I    S S S S S      where any term mkI for 1 k m  expresses the function 1 2( , ,..., ) . m k m kI Q Q Q Q However, such expressions do not give the required bounds of . For this aim special methods should be used. One of such methods is implemented above. I. Zaslavski and M. Khachatryan 87 References [1] M. H. Khachatryan. “On the Representation of Arithmetical and String Functions in Formal Languages,” Transactions of IIAP of NAS of RA, Mathematical Problems of Computer Science, vol. 27, pp. 37-53, 2006. [2] A. I. Maltsev. Algorithms and Recursive Functions. 2nd Edition, Moskow, Nauka , 1986 (in Russian). Submitted 28.11.2012, accepted 30.01.2013. Պարզագույն անդրադրարձ (ռեկուրսիվ) թվաբանական և բառային ֆունկցիաների համեմատական բարդության մասին Ի. Զասլավսկի և Մ. Խաչատրյան Ամփոփում Դիտարկվում են [1]-ում սահմանված պարզագույն անդրադարձ (ռեկուրսիվ) թվաբանական և բառային ֆունկցիաների ներկայացման LA և LW ձևային լեզուները։ Շենոնի AWSH և WASH ֆունկցիաները, որոնք բնութագրում են թվաբանական և բառային ֆունկցիաների ներկայացումների բարդությունների միջև եղած կապերը նշված լեզուներում, սահմանվում են, ինչպես [1]-ում։ Մի նոր մեթոդով տրվում է AWSH ֆունկցիայի վերին գնահատականի ապացույցը։ Այդ մեթոդը որոշ դեպքերում ապահովում է կիրառությունների ավելի լայն հնարավորություններ, քան` [1]-ում դիտարկվող մեթոդները։ О сравнительной сложности примитивно рекурсивных арифметических и словарных функций И. Д Заславский и М. Хачатрян Аннотация Рассматриваются формальные языки LA и LW, введенные в [1] для представления примитивно рекурсивных арифметических и словарных функций. Функции Шеннона AWSH и WASH , выражающие соотношения между сложностями представления арифметических и словарных функций в этих языках, определяются так же, как в [1]. Дается новое доказательство верхней оценки для AWSH , основанное на методе, дающем в ряде случаев новые возможности для приложений по сравнению с методами, рассматриваемыми в [1].