11_Lilit_Mariam.DVI Mathematical Problems of Computer Science 39, 88{93, 2013. I nvestigation of E-Capacity for B iometr ic I denti¯cation P r otocol with Random P ar ameter ¤ Ma r ia m E . H a r o u t u n ia n a n d L ilit A . Te r -V a r d a n ya n Institute for Informatics and Automation Problems of NAS RA e-mail: armar@ipia.sci.am, lilit@sci.am Abstract In recent years biometrics is widely used in di®erent tasks in the ¯eld of security. In this paper we investigated the biometric identi¯cation system from an information- theoretical point of view. We investigate the exponentially high reliability criterion in biometric identi¯cation systems. The biometric identi¯cation system with random parameter is considered, which is more realistic for application. The lower and upper bounds of identi¯cation E-capacity of the model with random parameter for maximal and average error probabilities are constructed. When E ! 0 we derive the corre- sponding bounds of the capacity of the biometric identi¯cation system with random parameter, which coincide and hence, as a corollary we obtain the identi¯cation capac- ity for this model. Keywords: Biometric identi¯cation system, identi¯cation capacity, E-capacity bounds, error exponents, channel with random parameter. 1 . In t r o d u c t io n In r e c e n t ye a r s b io m e t r ic s is wid e ly u s e d in d i®e r e n t t a s ks in t h e ¯ e ld o f s e c u r it y. B io m e t r ic s is b e in g u s e d fo r p h ys ic a l a c c e s s c o n t r o l, c o m p u t e r lo g -in , in t e r n a t io n a l b o r d e r c r o s s in g a n d ID c a r d s , e -p a s s p o r t s , b a s e d o n b io lo g ic a l fe a t u r e s o f a n y p e r s o n , s u c h a s ¯ n g e r p r in t s , a n e ye ir is [2 ]. In t h is p a p e r we c o n s id e r t h e p r o t o c o l o f b io m e t r ic id e n t i¯ c a t io n . Th e id e n t i¯ c a t io n s ys t e m wit h r a n d o m p a r a m e t e r is g ive n in Fig .1 . A t yp ic a l p r o t o c o l fo r id e n t i¯ c a t io n c o n s is t s o f t wo s t e p s : e n r o llm e n t a n d id e n t i¯ c a t io n . D u r in g t h e e n r o llm e n t , t h e b io m e t r ic d a t a o f M s u b je c t s a r e c a p t u r e d a n d a n a lyz e d , a ft e r t h a t , fo r e a c h in d ivid u a l, a r e c o r d is a d d e d t o a d a t a b a s e . A p e r fe c t s ys t e m wo u ld a lwa ys r e c o g n iz e a n in d ivid u a l a n d r e je c t a n im p o s t o r . To b u ild a n id e a l c h a n n e l is im p o s s ib le b e c a u s e b io m e t r ic d a t a a r e g a t h e r e d fr o m in d ivid u a ls u n d e r e n vir o n m e n t a l c o n d it io n s a n d t h e c h a n n e ls a r e e xp o s e d t o n o is e . S u c h a s ys t e m is n o t p e r fe c t ly s e c u r e , it le a d s t o s o m e e r r o r s , a n d it c a n b e in fo r m a t io n -t h e o r e t ic a l s e c u r e u p t o a c e r t a in le ve l. In t h is p a p e r we in ve s t ig a t e d t h e b io m e t r ic id e n t ī c a t io n s ys t e m fr o m a n in fo r m a t io n -t h e o r e t ic a l p o in t o f vie w. Th e e n r o llm e n t -d a t a in a d a t a b a s e is a n o is y ve r s io n o f t h e b io m e t r ic a l d a t a c o r r e s p o n d in g t o t h e in d ivid u a l. ¤Research was supported by Armenian national grant 11-1b255. 8 8 M. Haroutunian and L. Ter-Vardanyan 8 9 Fig. 1. Model of biometric identi¯cation system with random parameter In t h e id e n t ī c a t io n p h a s e a n u n kn o wn in d ivid u a l is o b s e r ve d a g a in a n d a n o t h e r n o is y ve r s io n o f t h e b io m e t r ic d a t a is c o m p a r e d t o t h e e n r o llm e n t d a t a in t h e d a t a b a s e . Th e s ys t e m h a s t o c o m e u p wit h a n e s t im a t e o f t h e in d ivid u a l. W ille m s e t a l [1 ,3 ] in ve s t ig a t e d t h e fu n d a m e n t a l p r o p e r t ie s o f b io m e r t ic id e n t i¯ c a t io n s ys t e m . It h a s b e e n s h o wn t h a t it is im p o s s ib le t o r e lia b ly id e n t ify m o r e p e r s o n s t h a n c a p a c it y wh ic h is a n in h e r e n t c h a r a c t e r is t ic o f a n y id e n t i¯ c a t io n s ys t e m . Th e y d e r ive d t h e c a p a c it y C o f t h is m o d e l. In [4 ] t h e E-c a p a c it y n e w c o n c e p t fo r b io m e t r ic a l id e n t ī c a t io n s ys t e m wa s in t r o d u c e d . W e in ve s t ig a t e d t h e e xp o n e n t ia lly h ig h r e lia b ilit y c r it e r io n in b io m e t r ic id e n t ī c a t io n s ys - t e m s . In o t h e r wo r d s , we in t r o d u c e d a n e w p e r fo r m a n c e c o n c e p t o f b io m e t r ic id e n t i¯ c a t io n E-c a p a c it y, wh ic h t a ke s in t o a c c o u n t a s t r o n g e r r e qu ir e m e n t o n id e n t i¯ c a t io n fa u lt e ve n t s wit h e xt r e m e ly s m a ll p r o b a b ilit y ( 2 ¡NE in s t e a d o f " ) . In t e r m s o f p r a c t ic a l a p p lic a t io n s a n e xp o n e n t ia l d e c r e a s e in e r r o r p r o b a b ilit y ( n a m e ly, in u n wa n t e d id e n t i¯ c a t io n fa u lt s ) is m o r e d e s ir a b le . In p r a c t ic e t h e in d ivid u a ls a r e o b s e r ve d in va r io u s p la c e s a n d a t va r io u s t im e s . Th a t is wh y it is m o r e in t e r e s t in g fr o m t h e p r a c t ic a l p o in t o f vie w t o a s s u m e t h a t t h e c o n s id e r e d m o d e l c h a n n e ls d e p e n d o n a r a n d o m p a r a m e t e r o f t h e b io m e t r ic m o d e l. In t h is p a p e r we in ve s t ig a t e t h e b io m e t r ic id e n t i¯ c a t io n s ys t e m wit h r a n d o m p a r a m e t e r , wh ic h is m o r e r e a lis t ic fo r a p p lic a t io n . Th e c h a n n e l wit h r a n d o m p a r a m e t e r wit h a d d it io n a l in fo r m a t io n o n t h e e n c o d e r wa s ¯ r s t c o n s id e r e d b y S h a n n o n [5 ] a n d s t u d ie d b y Ge lfa n d S . I. a n d P in s ke r M. S . [6 ]. Th e y fo u n d t h e c a p a c it y o f t h is c h a n n e l fo r t h e a ve r a g e e r r o r p r o b a b ilit y C in a s it u a t io n wh e n t h e s t a t e s e qu e n c e is kn o wn a t t h e e n c o d e r . A h ls we d e R . F. [7 ] s h o we d t h a t t h e c a p a c it y fo r t h e m a xim u m e r r o r p r o b a b ilit y C is t h e s a m e . Th e E-c a p a c it y fo r t h e c h a n n e l wit h r a n d o m p a r a m e t e r , E-c a p a c it y a n d c a p a c it y fo r t h e m u lt ip le -a c c e s s c h a n n e l wit h r a n d o m p a r a m e t e r wa s in ve s t ig a t e d b y H a r o u t u n ia n E . A ., H a r o u t u n ia n M. E . [8 ,1 0 ]. Th e c h a n n e l c a n b e c o n s id e r e d in fo u r c a s e s , wh e n t h e s t a t e s e qu e n c e is kn o wn o r u n kn o wn a t t h e e n c o d e r a n d d e c o d e r . P r o c e e d in g fr o m t h e a p p lic a t io n s in t h e id e n t ī c a t io n p r o t o c o l, t h e s it u a t io n , wh e n t h e s t a t e s e qu e n c e is u n kn o wn a t t h e e n c o d e r a n d d e c o d e r , is p o s s ib le . In t h is p a p e r t h e lo we r a n d u p p e r b o u n d s o f t h e id e n t ī c a t io n E-c a p a c it y o f t h e m o d e l wit h r a n d o m p a r a m e t e r fo r m a xim a l a n d a ve r a g e e r r o r p r o b a b ilit ie s a r e c o n s t r u c t e d . W h e n 9 0 Investigation of E-Capacity for Biometric Identi¯cation Protocol with Random Parameter E ! 0 we d e r ive t h e c o r r e s p o n d in g b o u n d s o f t h e c a p a c it y o f t h e b io m e t r ic id e n t i¯ c a t io n s ys t e m wit h r a n d o m p a r a m e t e r , wh ic h c o in c id e a n d h e n c e , a s a c o r o lla r y we o b t a in t h e id e n t ī c a t io n c a p a c it y fo r t h is m o d e l. 2 . N o t a t io n s a n d D e ¯ n it io n s L e t X ; Y; Z; S b e ¯ n it e s e t s a n d W b e a fa m ily o f d is c r e t e m e m o r yle s s c h a n n e ls Ws : X ! Y, wit h a n in p u t a lp h a b e t X a n d a n o u t p u t a lp h a b e t Y. Th e s is t h e c h a n n e l s t a t e , va r yin g in d e p e n d e n t ly a t e a c h m o m e n t o f t h e c h a n n e l a c t io n wit h t h e s a m e kn o wn P D Q( s) o n S. Th e r e a r e M in d ivid u a ls a n d e a c h in d ivid u a l h a s a n in d e x m = f 1 ; 2 ; ¢ ¢ ¢ ; Mg. A b io m e t r ic d a t a s e qu e n c e x( m ) = fx1; x2; ¢ ¢ ¢ ; xN g, wh e r e xn 2 X ; n = 1 ; N c o r r e s p o n d s t o e a c h in d ivid u a l m . A ll t h e s e s e qu e n c e s a r e s u p o s e d t o b e g e n e r a t e d a t r a n d o m wit h a g ive n p r o b a b ilit y d is t r ib u t io n P N ( x ) = NY n=1 P ( xn ) ; x 2 X N : E nr ollment phase. L e t u s h a ve t h e s t a t io n a r y a n d d is c r e t e m e m o r yle s s c h a n n e l W ( yjx; s) wit h r a n d o m p a r a m e t e r . In t h is p h a s e a ll b io m e t r ic d a t a s e qu e n c e s x ( m) a r e o b s e r ve d via t h is c h a n n e l. Th e s t a t e o f t h e c h a n n e l is c h a n g e d b y t h e fo llo win g p r o b a b ilit y d is t r ib u t io n Q( s) , it m e a n s W N ( yjx; s) = NY n=1 W ( ynjxn; sn ) ; QN ( s) = NY n=1 Q ( sn ) x 2 X N ; y 2 YN ; s 2 SN : Th e r e s u lt in g y ( m ) e n r o llm e n t o u t p u t s e qu e n c e s fo r a ll m = f 1 ; 2 ; ¢ ¢ ¢ ; Mg a r e s t o r e d in t h e d a t a b a s e ( d e ¯ n e it a s YDB ) . I denti¯cation phase. In t h e id e n t ī c a t io n p h a s e t h e b io m e t r ic d a t a s e qu e n c e o f a n u n kn o wn in d ivid u a l is o b s e r ve d via t h e s a m e m e m o r yle s s c h a n n e l W ( zjx; s) wit h r a n d o m p a r a m e t e r . W N ( zjx; s) = NY n=1 W ( ynjxn; sn ) ; z 2 ZN ; x 2 X N ; s 2 SN : Th e r e s u lt in g id e n t i¯ c a t io n o u t p u t s e qu e n c e z is c o m p a r e d t o t h e s e qu e n c e s y ( m ) , m = 1 ; 2 ; ¢ ¢ ¢ ; M, fr o m t h e d a t a b a s e a n d t h e id e n t i¯ c a t io n fu n c t io n gN : ZN ! f 0 ; 1 ; 2 ; ¢ ¢ ¢ ; Mg p r o d u c e s t h e in d e x o f t h e u n kn o wn in d ivid u a l m0 = gN ( z) ; h e r e 0 s t a n d s fo r t h e c a s e , wh e n t h e u n kn o wn in d ivid u a l h a s n o t b e e n o b s e r ve d b y t h e e n r o llm e n t p h a s e . If t h e s t a t e s e qu e n c e is u n kn o wn a t t h e e n c o d e r a n d d e c o d e r , le t u s d e n o t e W ¤ ( yjx ) = X s2S Q( s) W ( yjx; s) ; W ¤ ( zjx) = X s2S Q( s) W ( zjx; s) : A n d P ¤ = fP ¤ ( y ) = X x W ¤ ( yjx ) P ( x) ; x 2 X; y 2 Y g; W ¤ ( zjy ) = P x W ¤ ( yjx ) W ¤ ( zjx ) P ( x ) P ¤ ( y ) : M. Haroutunian and L. Ter-Vardanyan 9 1 Th e c h a n n e l W ¤ : Y ! Z is m e m o r yle s s : W N ( zjy ) = NY n=1 W ( znjyn ) ; z 2 ZN ; y 2 YN : D e n o t e b y R t h e fo llo win g r a t e R = 1 N lo g 2 M: Th e e r r o r p r o b a b ilit y o f t h e id e n t i¯ c a t io n o f t h e p e r s o n m is e ( N; m ) = W N ( ZN ng¡1N ( m) jy ( m) ) ; wh e r e g¡1N ( m) = fz : gN ( z ) = mg: W e c o n s id e r t h e maximal a n d t h e aver age er r or pr obabilities e( N ) = m a x m2M e( m ) ; e ( N ) = 1 M X m2M e( m ) : Th e E-c a p a c it y fu n c t io n fo r t h e g ive n E > 0 is d e ¯ n e d a s C ( E; P ¤; W ¤ ) = lim N!1 1 N lo g M ( E; P ¤; W ¤; N ) ; wh e r e M ( E; P ¤; W ¤; N ) = s u p gN fM : eQ ( N ) · e xp ( ¡N E ) g: W e d e n o t e b y C ( E; P ¤; W ¤ ) t h e E-c a p a c it y fo r t h e a ve r a g e e r r o r p r o b a b ilit y. W e s h a ll u s e t h e fo llo win g P D in t h e fo r m u la t io n o f r e s u lt s : P = fP ( y ) ; y 2 Yg; V = fV ( zjy ) ; z 2 Z; y 2 Yg: Fo r in fo r m a t io n -t h e o r e t ic qu a n t it ie s , s u c h a s e n t r o p y HP ( Y ) , m u t u a l in fo r m a t io n IP;V ( Z ^ Y ) , t h e d ive r g e n c e D ( V jjWjP ) a n d fo r t h e n o t io n o f t h e t yp e we r e fe r t o [9 ]{ [1 5 ]. 3 . Fo r m u la t io n o f t h e R e s u lt To d e ¯ n e t h e lo we r b o u n d ( random coding bound ) o f t h e id e n t ī c a t io n o f E-c a p a c it y fo r t h e c h a n n e l wit h r a n d o m p a r a m e t e r le t u s d e n o t e : Rr ( E; P ¤; W ¤ ) 4 = 4 = m in P;V :D(P ±V jjP ¤±W ¤)·E ¯̄ ¯̄IP;V ( Z ^ Y ) + D ( P ± V jjP ¤ ± W ¤ ) ¡ E ¯̄ ¯̄ + : ( 1 ) Fo r t h e fo r m u la t io n o f t h e u p p e r b o u n d ( sphere packing bound ) o f t h e in d e n t i¯ c a t io n o f E- c a p a c it y le t u s in t r o d u c e t h e fo llo win g fu n c t io n : Rsp ( E; P ¤; W ¤ ) 4 = m in P;V :D(P ±V jjP ¤±W ¤)·E IP;V ( Z ^ Y ) : ( 2 ) 9 2 Investigation of E-Capacity for Biometric Identi¯cation Protocol with Random Parameter T heor em. F or the biometric identi¯cation system with random parameter for the given P ¤; W ¤ and for all E > 0 Rr ( E; P ¤; W ¤ ) · C ( E; P ¤; W ¤ ) · C ( E; P ¤; W ¤ ) · Rsp ( E; P ¤; W ¤ ) : Th e p r o o f o f t h e t h e o r e m is s im ila r t o t h e p r o o f e xp o s e d in [4 ]. Cor ollar y. W hen E ! 0 we derive the lower and upper bounds capacity of the channel with random parameter, which coincide and hence, we obtain the capacity C = IP ¤;W ¤ ( Z ^ Y ) : Refer ences [1 ] F. W ille m s , T. K a lke r , J. Go s e lin g , a n d J.-P . L in n a r t z , \ On t h e c a p a c it y o f a b io m e t r ic a l id e n t i¯ c a t io n s ys t e m " , International Symposium on Information Theory, Y o ko h a m a , Ja p a n , p . 8 2 , 2 0 0 3 . [2 ] S . P a n ka n t i, R . M. B o lle a n d A . Ja in , \ B io m e t r ic s -Th e Fu t u r e o f Id e n t i¯ c a t io n " , IE E E Computer, vo l. 3 3 , n o . 2 , p p . 4 6 4 9 , Fe b r u a r y, 2 0 0 2 . [3 ] T. Ig n a t e n ko a n d F. W ille m s , " B io m e t r ic s e c u r it y fr o m a n In fo r m a t io n -Th e o r e t ic a l p e r - s p e c t ive " , F oundations and Trends in Communications and Information Theory, vo l. 7 , n o 2 -3 , p p . 1 3 5 -3 1 6 , 2 0 1 2 . [4 ] M.E .H a r o u t u n ia n , A . Mu r a d ya n a n d L . Te r -V a r d a n ya n , " U p p e r a n d lo we r b o u n d s o f b io m e t r ic id e n t ī c a t io n E- c a p a c it y" , Transactions of IIAP of NAS of R A, M athemat- ical P roblems of Computer Science, V 3 6 , p p .1 -1 0 , 2 0 1 2 . [5 ] C. E . S h a n n o n " Ch a n n e l wit h s id e in fo r m a t io n a t t h e t r a n s m it t e r ." , IB M R es. D evel- opm., 1 9 5 8 . V . 2 . N o . 4 . P . 2 8 9 -2 9 3 . [6 ] S . I. Ge lfa n d , M. S . P in s ke r " Co d in g fo r c h a n n e l wit h r a n d o m p a r a m e t e r s ." , P roblems of Control and Information Theory, 1 9 8 0 . V .8 . N o . 1 . P . 1 9 -3 1 . [7 ] R . F. A h ls we d e , " A r b it r a r ily va r yin g c h a n n e ls wit h s t a t e s s e qu e n c e kn o wn t o t h e s e n d e r ." , IE E E Transactions on Information Theory, 1 9 8 6 . V . 3 2 . N o . 5 . P . 6 2 1 -6 2 9 . [8 ] M.E . H a r o u t u n ia n , \ Th e b o u n d s fo r E -c a p a c it y o f c h a n n e l wit h r a n d o m p a r a m e t e r ." , P roblems of Information Transmission, vo l. 2 7 , n o . 1 , p p . 1 4 -2 3 , 1 9 9 1 . [9 ] E . A . H a r o u t u n ia n , M. E . H a r o u t u n ia n a n d A . N . H a r u t yu n ya n , " R e lia b ilit y c r it e r ia in in fo r m a t io n t h e o r y a n d in s t a t is t ic a l h yp o t h e s is t e s t in g " , F oundations and Trends in Communications and Information Theory, vo l. 4 , n o 2 -3 , p p . 9 7 -2 6 3 , 2 0 0 8 . [1 0 ] M. E . H a r o u t u n ia n , \ E s t im a t e s o f E-c a p a c it y a n d c a p a c it y r e g io n s fo r m u lt ip le -a c c e s s c h a n n e l wit h r a n d o m p a r a m e t e r " , L ecture Notes in Computer Science, vo l. 4 1 2 3 , S p r in g e r V e r la g , p p . 1 9 6 -2 1 7 , 2 0 0 6 . [1 1 ] E . A . H a r o u t u n ia n , " On b o u n d s fo r E-c a p a c it y o f D MC" , IE E E Transactions on Infor- mation Theory, V 5 3 , N 1 1 , p p . 4 2 1 0 -4 2 2 0 , 2 0 0 7 . [1 2 ] M. E . H a r o u t u n ia n , S . A . To n o ya n , \ R a n d o m c o d in g b o u n d o f in fo r m a t io n h id in g E- c a p a c it y" , P roc. of IE E E International Symposium on Information Theory, p . 5 3 6 , U S A , Ch ic a g o , 2 0 0 4 . [1 3 ] T. M. Co ve r a n d J. A . Th o m a s , E lements of Information Theory, W ile y, N e w Y o r k, 1 9 9 1 . M. Haroutunian and L. Ter-Vardanyan 9 3 [1 4 ] I. Cs is z ¶a r a n d J. K Äo r n e r , Information Theory: Coding Theorems for D iscrete M emory- less Systems, A c a d e m ic P r e s s , N e w Y o r k, 1 9 8 1 . [1 5 ] I. Cs is z ¶a r , \ Th e m e t h o d o f t yp e s " , IE E E Transactions on Information Theory, vo l. 4 4 , n o . 6 , p p . 2 5 0 5 -2 5 2 3 , 1 9 9 8 . Submitted 22.11.2012, accepted 14.02.2013. E-áõݳÏáõÃÛ³Ý áõëáõÙݳëÇñáõÃÛáõÝÁ å³ï³Ñ³Ï³Ý å³ñ³Ù»ïñáí Ï»Ýë³ã³÷³Ï³Ý ÝáõÛݳϳݳóÙ³Ý ³ñӳݳ·ñáõÃÛ³Ý Ñ³Ù³ñ Ø. гñáõÃÛáõÝÛ³Ý ¨ È. î»ñ-ì³ñ¹³ÝÛ³Ý ²Ù÷á÷áõÙ ì»ñçÇÝ ï³ñÇÝ»ñÇÝ Ï»Ýë³ã³÷áõÃÛáõÝÁ ɳÛÝáñ»Ý ÏÇñ³éíáõÙ ¿ ³Ýíï³Ý·áõÃÛ³Ý áÉáñïÇ ï³ñµ»ñ ËݹÇñÝ»ñáõÙ: ²ß˳ï³Ýùáõ٠ѻﳽáïí»É ¿ Ï»Ýë³ã³÷³Ï³Ý ÝáõÛݳϳݳóÙ³Ý Ñ³Ù³Ï³ñ·Á‘ ÇÝýáñÙ³óÇáÝ-ï»ë³Ï³Ý ï»ë³ÝÏÛáõÝÇó: Ø»Ýù Ñ»ï³- ½áïáõÙ »Ýù óáõóã³ÛÇÝ µ³ñÓñ Ñáõë³ÉÇáõÃÛ³Ý ã³÷³ÝÇßÁ‘ Ï»Ýë³ã³÷³Ï³Ý ÝáõÛݳϳ- ݳóÙ³Ý Ñ³Ù³Ï³ñ·»ñáõÙ: ¸Çï³ñÏí³Í ¿ å³ï³Ñ³Ï³Ý å³ñ³Ù»ïñáí Ï»Ýë³ã³÷³Ï³Ý ÝáõÛݳϳݳóÙ³Ý Ñ³Ù³Ï³ñ·Á, áñÁ ÏÇñ³éáõÃÛáõÝÝ»ñÇ ï»ë³Ï»ïÇó ³í»ÉÇ Çñ³ï»ë³Ï³Ý ¿: γéáõóí³Í »Ý E- áõݳÏáõÃÛ³Ý í»ñÇÝ ¨ ëïáñÇÝ ·Ý³Ñ³ï³Ï³ÝÝ»ñÁ ³é³í»É³·áõÛÝ ¨ ÙÇçÇÝ ë˳ÉÇ Ñ³í³Ý³Ï³ÝáõÃÛáõÝÝ»ñÇ ¹»åùáõÙ å³ï³Ñ³Ï³Ý å³ñ³Ù»ïñáí Ùá¹»ÉÇ Ñ³Ù³ñ: ºñµ E ! 0 , ëï³ÝáõÙ »Ýù å³ï³Ñ³Ï³Ý å³ñ³Ù»ïñáí Ï»Ýë³ã³÷³Ï³Ý ÝáõÛݳϳݳóÙ³Ý Ñ³Ù³Ï³ñ·Ç áõݳÏáõÃÛ³Ý Ñ³Ù³å³ï³ëË³Ý ·Ý³Ñ³ï³Ï³ÝÝ»ñÁ, áñáÝù ѳÙÁÝÏÝáõÙ »Ý ¨, áñå»ë ѻ勉Ýù, ëï³ÝáõÙ »Ýù ³Û¹ Ùá¹»ÉÇ ÝáõÛݳϳݳóÙ³Ý áõݳÏáõÃÛáõÝÁ: Èññëåäîâàíèå E-ïðîïóñêíîé ñïîñîáíîñòè äëÿ ïðîòîêîëà áèîìåòðè÷åñêîé èäåíòèôèêàöèè ñî ñëó÷àéíûì ïàðàìåòðîì Ì. Àðóòþíÿí è Ë. Òåð-Âàðäàíÿí Àííîòàöèÿ Çà ïîñëåäíèå ãîäû áèîìåòðèêà øèðîêî èñïîëüçóåòñÿ â ðàçëè÷íûõ çàäà÷àõ â ñôåðå áåçîïàñíîñòè.  äàííîé ðàáîòå ìû èññëåäîâàëè ñèñòåìó áèîìåòðè÷åñêîé èäåíòèôèêàöèè ñ èíôîðìàöèîííî-òåîðåòè÷åñêîé òî÷êè çðåíèÿ. Ìû èññëåäóåì êðèòåðèé ýêñïîíåíöèàëüíî âûñîêîé íàäåæíîñòè â áèîìåòðè÷åñêèõ ñèñòåìàõ èäåíòèôèêàöèè. Ðàññìîòðåíà ñèñòåìà áèîìåòðè÷åñêîé èäåíòèôèêàöèè ñî ñëó÷àéíûì ïàðàìåòðîì, êîòîðàÿ áîëåå ðåàëèñòè÷íà ñ òî÷êè çðåíèÿ ïðèëîæåíèé. Ïîñòðîåíû íèæíÿÿ è âåðõíÿÿ ãðàíèöû äëÿ E-ïðîïóñêíîé ñïîñîáíîñòè ìîäåëè ñî ñëó÷àéíûì ïàðàìåòðîì äëÿ ìàêñèìàëüíîé è ñðåäíåé âåðîÿòíîñòè îøèáêè. Êîãäà E ! 0 ìû ïîëó÷àåì ñîîòâåòñòâóþùèå îöåíêè ïðîïóñêíîé ñïîñîáíîñòè äëÿ ñèñòåìû áèîìåòðè÷åñêîé èäåíòèôèêàöèè ñî ñëó÷àéíûì ïàðàìåòðîì, êîòîðûå ñîâïàäàþò è, êàê ñëåäñòâèå, ìû ïîëó÷àåì ïðîïóñêíóþ ñïîñîáíîñòü èäåíòèôèêàöèè äëÿ ýòîé ìîäåëè.