D:\sbornik\...\12_G.DVI Mathematical Problems of Computer Science 39, 94{100, 2013. Radicals and P r er adicals in the Categor y of M odules over All Rings Gr ig o r G. E m in -Te r ya n ( E m in ) Institute for Informatics and Automation Problems of NAS RA e-mail: grigoremin@rambler.ru Abstract Let Mod be a category whose objects are all possible pairs (A; U), where U is an associative ring, A is a right U-module (not unitary in the general case) and the set of morphisms of module (A; U) to module (B; V ) consists of pairs of mappings ('A; 'U ), where 'A or 'U , respectively, is a homomorphism of Abelian group A to Abelian group B (ring U to ring V ), where (a ¢ u)'A = a 'A ¢ u 'U , a 2 A, u 2 U. This pair of mappings is called a homomorphism of module (A; U) to module (B; V ). It is proved that strict radicals of Mod in the sense of Kurosh are described by means of systems of strict radicals of the category of associative rings As and categories of right U-modules Mod ¡ U, U 2 As. It turned out that a wider classes of preradicals and radicals of Mod can also be described by means of systems of preradicals and radicals of As and Mod ¡ U, U 2 As, respectively, which satisfy some conditions. Keywords: Module, associative ring, Abelian group, category, radical, preradical, torsion, ideally hereditary radical, strongly hereditary radical. L e t u s c o n s id e r t h e c a t e g o r y M od, wh o s e o b je c t s a r e a ll p o s s ib le p a ir s ( A; U ) , wh e r e A is a r ig h t U-m o d u le o ve r a n a s s o c ia t ive r in g U, a n d t h e m o r p h is m s a r e p a ir s ( 'A; 'U ) o f h o m o m o r p h is m s s a t is fyin g t h e c o n d it io n ( a ¢ u ) 'A = a 'A ¢ u 'U , a 2 A, u 2 U [1 ]. De¯nition 1: W e will say that a preradical r is de¯ned in the Mod, if an ideal r ( A; U ) matches to each module ( A; U ) 2 Mod such that r ( A; U ) ( 'A; 'U ) µ r ( B; V ) for each homomorphism ( 'A; 'U ) : ( A; U ) ! ( B; V ) of M od [2], [3]. In o t h e r wo r d s , t h e p r e r a d ic a l r is a n o r m a l s u b fu n c t o r o f t h e id e n t it y fu n c t o r IdM od : Mod ! M od. In e a c h m o d u le ( A; U ) 2 Mod it s in g le s o u t a n id e a l r ( A; U ) s u c h t h a t fo r e ve r y h o m o m o r p h is m ( 'A; 'U ) : ( A; U ) ! ( B; V ) t h e d ia g r a m : ( A; U ) ¡! ( B; V ) " " r ( A; U ) ¡! r ( B; V ) is c o m m u t a t ive . A s s u m e t h a t in t h e c a t e g o r y Mod s o m e p r e r a d ic a l r is s p e c ī e d . Co n s id e r a fu ll s u b c a t - e g o r y Mod( As) o f M od wh o s e o b je c t s a r e a ll m o d u le s o f t h e fo r m ( 0 ; U ) . A n y id e a ls a n d 9 4 G. Emin-Teryan (Emin) 9 5 a n y h o m o m o r p h ic im a g e s o f o b je c t s fr o m Mod ( As) t h e m s e lve s lie in s u b c a t e g o r y Mod( As) , a n d h e n c e , t h e p r e r a d ic a l r in d u c e s a c o m p le t e ly d e t e r m in a t e p r e r a d ic a l R in s u b c a t e g o r y Mod( As) . Th is m e a n s t h a t a p r e r a d ic a l r d e ¯ n e s a c o m p le t e ly d e t e r m in a t e p r e r a d ic a l R in c a t e g o r y As o f a s s o c ia t ive r in g a n d r ( 0 ; U ) = ( 0 ; R( U ) ) . Lemma 1: L et r be any preradical in Mod, (A,U) be any module and r ( A; U ) = ( A0; U 0 ) . Then U 0 = R( U ) , where R is a preradical in As induced of preradical r of Mod. P r oof. S in c e r is a p r e r a d ic a l a n d ( 0 ; U ) is a s u b m o d u le o f ( A; U ) t h e n ( 0 ; R ( U ) ) = r ( 0 ; U ) µ r ( A; U ) = ( A0; U 0 ) . H e n c e R( U ) µ U 0. B u t fo r h o m o m o r p h is m ( 0 ; 1 U ) : ( A; U ) ! ( 0 ; U ) we h a ve ( A0; U 0 ) ( 0 ; 1 U ) = r ( A; U ) ( 0 ; 1 U ) µ r ( 0 ; U ) = ( 0 ; R( U ) ) , i.e ., U 0 µ R ( U ) . L e m m a 1 : is p r o ve d . R e c a ll t h a t t h e s u b m o d u le ( A0; U 0 ) o f ( A; U ) will b e a n id e a l o f ( A; U ) if a n d o n ly if U 0 is a n id e a l o f t h e r in g U a n d t h e in c lu s io n s A ¢ U 0 µ A0 a n d A0 ¢ U µ A0 a r e o b s e r ve d [1 ]. A s s u m e r is a n y p r e r a d ic a l o f Mod, ( A; U ) is a n a n y m o d u le a n d r ( A; U ) = ( A0; U 0 ) . S in c e ( A0; U 0 ) is a n id e a l o f ( A; U ) , t h e n A0 is a U -s u b m o d u le o f U-m o d u le A. N o w s h o w t h a t m a t c h in g s u b m o d u le A0 t o e a c h U -m o d u le A d e ¯ n e s t h e p r e r a d ic a l Ru in t h e c a t e g o r y o f r ig h t U-m o d u le s Mod ¡ U. A s s u m e A a n d B a r e U-m o d u le s , ' : A ! B is a n U-h o m o m o r p h is m a n d r ( A; U ) = ( A0; U 0 ) , r ( B; U ) = ( B0; U 0 ) , wh e r e U 0 = R( U ) b y L e m m a 1 :. W e 'll s h o w t h a t A0' µ B0. In d e e d , s in c e ( '; 1 U ) : ( A; U ) ! ( B; U ) is a h o m o m o r p h is m in Mod, t h e n ( A0; U 0 ) ( '; 1 U ) = r ( A; U ) ( '; 1 U ) µ r ( B; U ) = ( B0; U 0 ) . H e n c e A0' µ B0. Th u s , fo r a n y U -m o d u le A, if r ( A; U ) = ( A0; U 0 ) , m a t c h in g o f U-s u b m o d u le Ru ( A ) = A 0 t o e a c h U-m o d u le A d e ¯ n e s t h e p r e r a d ic a l Ru in t h e c a t e g o r y Mod ¡ U. Th u s , we h a ve t h e fo llo win g le m m a . Lemma 2: E ach preradical r of the category M od induces a completely determinate pre- radical R in As and preradicals RU in the categories M od ¡ U ( U 2 As) such that r ( A; U ) = ( RU ( A ) ; R( U ) ) for any module ( A; U ) of the category M od. L e t u s c o n s id e r t h e a c t io n o f t h e r in g h o m o m o r p h is m ' : U ! V . A n y r ig h t V -m o d u le B b e c o m e s a r ig h t U -m o d u le if t h e a c t io n o f t h e o p e r a t o r s is d e ¯ n e d a s fo llo ws : a ± u = a ( u') , we will s a y t h a t t h e m o d u le B is c o n ve r t e d in t o t h e U-m o d u le B' b y wit h d r a wa l a lo n g '. A s s u m e R is a n y p r e r a d ic a l o f As a n d RU ( U 2 As) a r e p r e r a d ic a ls o f t h e c a t e g o r ie s Mod ¡ U. Co n s id e r t h e s ys t e m o f p r e r a d ic a ls fR; RU j U 2 Asg. De¯nition 2: The system of preradicals fR; RU j U 2 Asg will be called a matched system of preradicals, if it satis¯es the following conditions: (P 1) A ¢ R( U ) µ RU ( A ) for each U-module A (P 2) RU ( B' ) µ RV ( B ) ) for each V -module B and each homomorphism ' : U ! V of rings, where B' is the conversion of V -module B into an U-module by the withdrawal along '. T heor em 1: Assume that the preradical r is speci¯ed in M od. Then in As it induces the preradical R and in each category Mod ¡ U ( U 2 As) it induces preradicals RU such that the system of preradicals fR; RU j U 2 Asg is matched. Conversely, every matched system of preradicals fR; RU j U 2 Asg speci¯es a completely determinate preradical r in Mod such that r ( A; U ) = ( RU ( A) ; R ( U ) ) for each ( A; U ) 2 Mod. There exists a one-to-one correspondence between all the preradicals of M od and all the matched systems of preradicals. 9 6 Radicals and Preradicals in the Category of Modules over All Rings P r oof. A s s u m e t h a t r is a p r e r a d ic a l o f Mod. Th e n , b y L e m m a 2 :, we h a ve a c o m - p le t e ly d e t e r m in a t e s ys t e m o f p r e r a d ic a ls fR; RU j U 2 Asg. S in c e fo r e a c h ( A; U ) 2 Mod, r ( A; U ) = ( RU ( A ) ; R ( U ) ) is a n id e a l o f m o d u le ( A; U ) , h e n c e A ¢ R( U ) µ RU ( A ) . Th u s , t h e c o n d it io n ( P 1 ) is s a t is ¯ e d . A s s u m e t h a t B is a V -m o d u le , ' : U ! V is a h o m o m o r p h is m o f r in g s , a n d B' is t h e c o n ve r s io n o f V -m o d u le B in t o a n U -m o d u le b y wit h d r a wa l a lo n g '. A s t h e p a ir ( 1 ; ') : ( B'; U ) ! ( B; V ) is a h o m o m o r p h is m in Mod, t h e n ( RU ( B' ) ; R ( U ) ) ( 1 ; ') = r ( B'; U ) ( 1 ; ') µ r ( B; V ) = ( RV ( B ) ; R ( V ) ) . Co n ve r s e ly, a s s u m e t h a t we a r e g ive n a m a t c h e d s ys t e m o f p r e r a d ic a ls fR; RU j U 2 Asg a n d ( A; U ) 2 Mod. S in c e R ( U ) is a n id e a l o f r in g U, RU ( A) is a s u b m o d u le o f U-m o d u le A a n d A ¢ R( U ) µ RU ( A) b y c o n d it io n ( P 1 ) , t h e n t h e s u b m o d u le ( RU ( A) ; R( U ) ) is a n id e a l o f t h e m o d u le ( A; U ) . L e t ( '; à ) : ( A; U ) ! ( B; V ) b e a n y h o m o m o r p h is m . It is c le a r t h a t R ( U ) à µ R ( V ) . On t h e o t h e r h a n d , it is e a s ily s e e n t h a t t h e h o m o m o r p h is m ( '; à ) = ( '; 1 ) ¢ ( 1 ; à ) , wh e r e ( '; 1 ) : ( A; U ) ! ( BÃ; U ) a n d ( 1 ; à ) : ( BÃ; U ) ! ( B; V ) . S in c e RU is a p r e r a d ic a l in Mod¡U a n d ( '; 1 ) is a n U -h o m o m o r p h is m , t h e n RU ( A) ' µ RU ( Bà ) . A n d fr o m t h e c o n d it io n ( P 2 ) it fo llo ws t h a t RU ( Bà ) µ RV ( B ) . H e n c e RU ( A) ' µ RV ( B ) . Th e t h ir d a s s e r t io n o f t h is t h e o r e m fo llo ws fr o m t h e ¯ r s t t wo o n e s , s in c e t h e e xp r e s - s io n s g ive n in t h e t h e o r e m a b o ve a r e m u t u a lly in ve r s ive . Th u s , t h e p r o o f o f t h e t h e o r e m is c o m p le t e d . Remar k 1 It is e a s y t o ve r ify [2 ] t h a t if r is a p r e r a d ic a l in M od, t h e n r ( A; U ) in c lu d e s a ll t h e r-s u b m o d u le s o f t h e m o d u le ( A; U ) fo r e a c h m o d u le ( A; U ) . A ls o t h e c la s s o f r-r a d ic a l m o d u le s is e n c lo s e d u n d e r t h e o p e r a t io n o f h o m o m o r p h ic im a g e s . De¯nition 3: A preradical r of Mod is called a radical if r ( ( A; U ) =r ( A; U ) ) = ( 0 ; 0 ) for each module ( A; U ) [4]. S im ila r t o L e m m a s 1 : a n d 2 :, o n e m a y p r o ve t h e fo llo win g le m m a . Lemma 3: L et r be a radical in Mod, ( A; U ) be some module and let r ( A; U ) = ( A0; U 0 ) . Then U 0 = R ( U ) , where R is the radical in As induced of the radical r of M od. Lemma 4: E very radical r of the category Mod induces a completely determinate radical R in As and radicals Ru in categories Mod ¡ U ( U 2 As) such that r ( A; U ) = ( RU ( A) ; R( U ) ) for any module ( A; U ) of the category Mod. A s s u m e t h a t R is a r a d ic a l o f As a n d RU ( U 2 As) a r e r a d ic a ls o f c a t e g o r ie s M od ¡ U. Co n s id e r t h e s ys t e m o f r a d ic a ls fR; RU j U 2 Asg. De¯nition 4: The system of radicals fR; RU j U 2 Asg is called a matched system of radicals if it satis¯es the following conditions: (P 1) A ¢ R ( U ) µ RU ( A ) for each U-module A (P 2) RU ( B' ) µ RV ( B ) ) for each V -module B and each homomorphism ' : U ! V of rings, where B' is the conversion of V -module B into an U-module by the withdrawal along '. G. Emin-Teryan (Emin) 9 7 (P 3) RU=R(U) ( A) = RU ( A¼ ) ) for each U=R( U ) -module A, where ¼ : U ! U=R ( U ) is a natural epimorphism and A¼ is the conversion of U=R ( U ) module A into U-module by withdrawal along ¼. T heor em 2: Assume that some radical r is speci¯ed in Mod. Then it induces the radical R in As and radicals RU in each category M od ¡ U, U 2 As such that the system of radicals fR; RU j U 2 Asg is matched. Conversely, every matched system of radicals fR; RU j U 2 Asg speci¯es a completely determinate radical r in M od such that r ( A; U ) = ( RU ( A) ; R ( U ) ) for each ( A; U ) 2 Mod. There exists a one-to-one correspondence between all the radicals of Mod and all the matched systems of radicals. P r oof. A s s u m e t h a t r is a r a d ic a l in Mod a n d fR; RU j U 2 Asg is a c o m p le t e ly d e t e r m in e d s ys t e m o f p r e r a d ic a ls . Ob vio u s ly, if r is a r a d ic a l in Mod, R is a r a d ic a l in As. Mo r e o ve r , ( RU=R(U) ( A=RU ( A ) ) ; R( U=R ( U ) ) ) = r ( ( A; U ) =r ( A; U ) ) = ( 0 ; 0 ) , i.e . RU=R(U ) ( A=RU ( A ) ) = 0 fo r e a c h ( A; U ) 2 Mod. H e n c e , a s it fo llo ws fr o m c o n d it io n ( P 2 ) RU ( A=RU ( A ) ) = 0 fo r e ve r y U-m o d u le A. L e t ¼ : U ! U=R( U ) b e a n a t u r a l e p im o r p h is m a n d A a n a r b it r a r y U=R ( U ) -m o d u le . Co n s id e r U -m o d u le A¼ in wh ic h a ± u = a ¤ ( u + R ( U ) ) , a 2 A, u 2 U b y d e ¯ n it io n . Ob vio u s ly, e ve r y s u b m o d u le o f U-m o d u le A¼ is a s u b m o d u le o f U=R ( U ) -m o d u le A. S in c e A ± R ( U ) = 0 , t h e r e ve r s e c o n ve r s io n , i.e . c o n ve r s io n t o o p e r a t io n a ¤ ( u + R( U ) ) = a ± u, a 2 A, u 2 U a ls o h o ld s . Th e r e fo r e U-m o d u le A¼ is t r a n s fo r m e d in t o a U=R( U ) - m o d u le A, a n d t h e s u b m o d u le s a n d fa c t o r m o d u le s o f U-m o d u le A¼ a r e t r a n s fo r m e d in t o s u b m o d u le s a n d fa c t o r m o d u le s o f U=R ( U ) -m o d u le A. Co n s id e r a n a t u r a l U -e p im o r p h is m µ : A¼ ! A¼=RU ( A¼ ) . Ob vio u s ly, fo r t r a n s fe r t o ¤ o p e r a t io n t h e m a p p in g µ b e c o m e s a n U=R ( U ) -h o m o m o r p h is m . Th u s , b e c a u s e RU=R(U) is a p r e r a d ic a l o f Mod ¡ U=RU we h a ve RU=R(U ) ( A) µ µ RU=R(U) ( A¼=RU ( A¼ ) ) . On t h e o t h e r h a n d , a s r is a r a d ic a l o f M od, t h e n in vie w o f a s s e r t io n a b o ve RU=R(U ) ( A¼=RU ( A¼ ) ) = 0 . H e n c e RU=R(U ) ( A) µ = 0 , i.e . RU=R(U) ( A) µ RU ( A¼ ) fo r e a c h U=R ( U ) -m o d u le A. Th e r e fo r e , b y c o n d it io n ( P 2 ) RU ( A¼ ) µ RU=R(U) ( A ) fo r e a c h U=R ( U ) -m o d u le A. Co n ve r s e ly, le t ( A; U ) b e a r a n d o m m o d u le o f Mod. S in c e R is a r a d ic a l o f As, t h e n r ( ( A; U ) =r ( A; U ) ) = ( RU=R(U) ( A=RU ( A ) ; 0 ) ) . A n a p p lic a t io n o f c o n d it io n ( P 3 ) t o U=R( U ) - m o d u le A=RU ( A ) yie ld s RU=R(U) ( A=RU ( A ) ) = RU ( A=RU ( A) ) = 0 , a s RU is a r a d ic a l o f Mod ¡ U . Th e t h ir d a s s e r t io n in t h is t h e o r e m fo llo ws fr o m Th e o r e m 1 :. Th e t h e o r e m is p r o ve d . De¯nition 5: A preradical r of M od is called idempotent, if r ( r ( A; U ) ) = r ( A; U ) for each module ( A; U ) . T heor em 3: The matched system of preradicals fR; RU j U 2 Asg de¯nes an idempotent preradical of the category Mod if and only if all preradicals of that system are idempotent and the condition (P 4) RU ( A) = RR(U) ( A) holds for each U-module A. P r oof. A s s u m e t h a t r is a n id e m p o t e n t p r e r a d ic a l o f M od a n d fR; RU j U 2 Asg is t h e c o r r e s p o n d in g m a t c h e d s ys t e m o f p r e r a d ic a ls . B e c a u s e r ( 0 ; U ) = ( 0 ; R ( U ) ) fo r a n y ( 0 ; U ) 2 Mod( As) a n d r is id e m p o t e n t , R will b e a ls o id e m p o t e n t . Th e r e fo r e , t h e id e m p o t e n c e o f r 9 8 Radicals and Preradicals in the Category of Modules over All Rings m e a n s t h a t ( RU ( A) ; R ( U ) ) = ( RR(U) ( RU ( A ) ) ; R( U ) ) , i.e . RU ( A) = RR(U) ( RU ( A ) fo r e a c h m o d u le ( A; U ) o f M od. On t h e o t h e r h a n d , it fo llo ws fr o m ( P 2 ) t h a t RR(U ) ( RU ( A ) ) µ RU ( RU ( A ) ) . H e n c e RU ( A ) = RR(U) ( RU ( A) ) µ RU ( RU ( A ) ) µ RU ( A ) , i.e . RU ( RU ( A ) ) = RU ( A) fo r e a c h U- m o d u le A. A s we h a ve a lr e a d y s e e n if r is id e m p o t e n t , RU ( A) = RR(U) ( RU ( A) ) fo r e a c h U -m o d u le A. On t h e o t h e r h a n d fo r e a c h U -m o d u le A, RU ( A) is a R ( U ) -s u b m o d u le o f R( U ) -m o d u le A, b e c a u s e RU ( A ) ¢ R ( U ) µ A ¢ R( U ) µ RU ( A) b y c o n d it io n ( P 1 ) . H e n c e RR(U ) ( RU ( A ) ) µ RR(U) ( A) . W e o b t a in t h a t RU ( A ) µ RR(U ) ( A ) . B u t in vie w o f ( P 2 ) RR(U ) ( A) µ RU ( A) . H e n c e RU ( A ) = RR(U ) ( A ) fo r e a c h U -m o d u le A. Co n ve r s e ly, a s s u m e t h a t fR; RU j U 2 Asg is a m a t c h e d s ys t e m o f id e m p o t e n t p r e r a d ic a ls wh ic h s a t is fy t h e c o n d it io n ( P 4 ) a n d ( A; U ) is a m o d u le o f t h e c a t e g o r y M od. Fr o m ( P 4 ) , wh ic h is u s e d fo r U -m o d u le RU ( A ) , it fo llo ws t h a t RR(U) ( RU ( A ) ) = RU ( RU ( A ) ) = RU ( A ) b e c a u s e RU is a n id e m p o t e n t p r e r a d ic a l in Mod-U . Th u s , t h e p r o o f o f t h e t h e o r e m is c o m p le t e d a s R( R ( U ) ) = R( U ) fo r e a c h U 2 As. De¯nition 6: The radical r of the category Mod is called ideally hereditary if r ( A0; U 0 ) = r ( A; U ) \ ( A0; U 0 ) for all ideals ( A0; U 0 ) of ( A; U ) 2 Mod [2], [5]. Remar k 2 Th e r a d ic a l R0 o f t h e s ys t e m fR; RU j U 2 Asg is a r a d ic a l o f t h e c a t e g o r y o f A b e lia n g r o u p Ab. S in c e R0 ( A ) ´ µ R0 ( A) fo r e ve r y A b e lia n g r o u p A a n d e ve r y e n d o m o r - p h is m ´ o f A, t h e s u b g r o u p R0 ( A) will b e a n U-s u b m o d u le fo r e a c h U -m o d u le A. Th u s , it is e a s y t o p r o ve t h a t R0 is a r a d ic a l in a ll t h e c a t e g o r ie s Mod ¡ U ( U 2 As) . Th e s ys t e m o f r a d ic a ls fR; RU j U 2 Asgin wh ic h RU = R0 fo r a ll U 2 As t u r n s t o a p a ir o f fR; R0g. A s in s u c h s ys t e m s t h e c o n d it io n s ( P 2 ) a n d ( P 3 ) a r e e xe c u t e d a u t o m a t ic a lly, t h e n t h e y will b e m a t c h e d if t h e y s a t is fy t h e o n ly c o n d it io n : A ¢ R ( U ) µ R0 ( A ) fo r e a c h U-m o d u le A, i.e . t h e o n ly c o n d it io n ( P 1 ) . T heor em 4: Assume that r is an ideally hereditary radical in Mod. Then in As it induces an ideally hereditary radical R and in Ab it induces a torsion RAb such that the pair fR; RAbg of radicals is matched. Conversely, every matched pair of radicals fR; RAbg, where R is an ideally hereditary radical in As and RAb is a torsion in Ab, speci¯es a completely determinate ideally hereditary radical r in Mod whose radical class includes all modules ( A; U ) such that U = R( U ) and A = RAb ( A ) . There exists a one-to-one correspondence between all ideally hereditary radicals of Mod and all such matched pairs. P r oof. L e t r b e a n id e a lly h e r e d it a r y r a d ic a l in Mod a n d le t fR; RU jU 2 Asg b e it s m a t c h e d s ys t e m o f r a d ic a ls . W e will p r o ve t h a t t h is m a t c h e d s ys t e m , wh ic h in p a r t ic u la r , s a t is ¯ e s t h e c o n d it io n ( P 1 ) will b e a p a ir o f fR; R0g, wh e r e R is a n id e a lly h e r e d it a r y r a d ic a l in As a n d R0 is a t o r s io n in Ab. L e t U b e a n a s s o c ia t ive r in g a n d A b e a n y U -m o d u le . Co n s id e r t h e m o d u le ( A; 0 ) . It is e a s y t o p r o ve t h a t ( A; 0 ) is a n id e a l o f m o d u le ( A; U ) . Th e r e fo r e , a s r is a n id e a lly h e r e d it a r y r a d ic a l in Mod, ( R0 ( A ) ; 0 ) = r ( A; 0 ) = ( A; 0 ) T r ( A; U ) = ( A T RU ( A ) ; 0 ) = ( RU ( A ) ; 0 ) , i.e . RU ( A ) = R0 ( A ) fo r e a c h U -m o d u le A, wh e r e U 2 As. Th u s RU = R0 fo r e a c h U 2 As. N o w le t U b e a n a s s o c ia t ive r in g a n d V b e a n y id e a l o f U. It is o b vio u s t h a t t h e m o d u le ( 0 ; V ) is a n id e a l o f t h e m o d u le ( 0 ; U ) . Th e r e fo r e , a s r is a n id e a lly h e r e d it a r y r a d ic a l in Mod, ( 0 ; R ( V ) ) = r ( 0 ; V ) = ( 0 ; V ) T r ( 0 ; U ) ) = ( 0 ; V T R ( U ) ) . H e n c e R( V ) = V T R ( U ) , i.e . R is a n id e a lly h e r e d it a r y r a d ic a l in As. G. Emin-Teryan (Emin) 9 9 S im ila r ly, c o n s id e r in g t h e m o d u le s ( A; 0 ) , we c a n p r o ve t h a t R0 is a t o r s io n in Ab. Co n ve r s e ly, le t t h e p a ir o f r a d ic a ls fR; R0g s a t is fy t h e c o n d it io n o f t h e t h e o r e m . A s t h is p a ir s a t is ¯ e s c o n d it io n ( P 1 ) , it will b e a m a t c h e d s ys t e m o f r a d ic a ls a c c o r d in g t o t h e r e m a r k a b o ve . Th e r e fo r e , t h e c o n s id e r e d s ys t e m will d e ¯ n e a c o m p le t e ly d e t e r m in a t e r a d ic a l r in Mod. N o w s h o w t h a t r is a n id e a lly h e r e d it a r y r a d ic a l. L e t ( A; U ) b e a m o d u le o f M od a n d ( B; V ) b e a n id e a l o f ( A; U ) . S in c e V is a n id e a l o f t h e r in g U , B is a s u b g r o u p o f A b e lia n g r o u p A, R is a n id e a lly h e r e d it a r y r a d ic a l in As a n d R0 is a t o r s io n in Ab, R ( V ) = V T R ( U ) a n d R0 ( B ) = B T R0 ( A ) . Th u s r ( B; V ) = ( R0 ( B ) ; R ( V ) ) = ( B T R0 ( A ) ; V T R( U ) ) = ( B; V ) T r ( A; U ) . Th e t h ir d a s s e r t io n o f t h e t h e o r e m fo llo ws fr o m t h e ¯ r s t t wo s in c e t h e e xp r e s s io n s g ive n t h e r e a r e m u t u a lly in ve r s e . De¯nition 7: The radical r in the sense of K urosh [1] is called strict if r-radical r ( A; U ) of any module ( A; U ) contains all r-submodules of ( A; U ) . De¯nition 8: The radical r of the category Mod is called s t r o n g ly h e r e d it a r y if r ( A1; U1 ) = r ( A; U ) T ( A1; U1 ) for all submodules ( A1; U1 ) of ( A; U ) 2 M od. It is e a s y t o p r o ve t h a t e ve r y s t r o n g ly h e r e d it a r y r a d ic a l is a s t r ic t r a d ic a l. In t h e s a m e wa y we m a y p r o ve t h e fo llo win g t h e o r e m . T heor em 5: Assume that the strongly hereditary radical r is speci¯ed in Mod. Then in As it induces a strongly hereditary radical R and in Ab it induces a torsion RAb such that the pair fR; RAbg of strongly hereditary radicals is matched. Conversely, every matched pair of strongly hereditary radicals fR; RAbg speci¯es a completely determinate strongly hereditary radical r in M od whose radical class includes all modules ( A; U ) such that U = R( U ) and A = RAb ( A) . There exists a one-to-one correspondence between all strongly hereditary radicals of Mod and all matched pairs of strongly hereditary radicals. Refer ences [1 ] G.G. E m in , \ P r e m a n ifo ld s , g r o u p p o id o f m a n ifo ld s a n d s t r ic t r a d ic a ls in t h e c a t e g o r y o f m o d u le s o ve r a ll r in g s " , Izv. AN Arm. SSR ser. matem., vo l. 1 4 , n o .3 , p p .2 1 1 -2 3 2 , 1 9 7 9 ; Soviet J ournal of Contemporary M athematical Analysis (Armenian Academy of Sciences), by Allerton P ress, In c . N e w-Y o r k, p p .5 2 -7 2 , 1 9 8 0 . [2 ] A . I. K a s h u , R a d ic a ls a n d To r s io n s in t h e m o d u le s , ( in R u s s ia n ) , Iz d . S h t iin z a , K is h in e v, 1 9 8 3 . [3 ] G. G. E m in -Te r ya n ( E m in ) , \ Id e m p o t e n t p r e r a d ic a ls in t h e c a t e g o r y o f m o d u le s o ve r a ll r in g s " . P roceedings of CSIT, A r m e n ia , Y e r e va n , p p . 6 1 -6 4 , 2 0 0 5 . [4 ] G. E m in -Te r ya n ( E m in ) , \ R a d ic a ls in t h e c a t e g o r y o f m o d u le s o ve r a ll r in g s " P roceedings of CSIT, A r m e n ia , Y e r e va n , p p . 3 5 -3 6 , 2 0 0 7 . [5 ] G. E m in -Te r ya n ( E m in ) , \ H e r e d it a r y r a d ic a ls in t h e c a t e g o r y o f m o d u le s o ve r a ll r in g s " , P roceedings of CSIT, A r m e n ia , Y e r e va n , p p . 4 4 -4 5 , 2 0 1 1 . Submitted 23.11.2012, accepted 18.02.2013. 1 0 0 Radicals and Preradicals in the Category of Modules over All Rings è³¹ÇϳÉÝ»ñÁ ¨ ÙÇÝãé³¹ÇϳÉÝ»ñÁ µáÉáñ ûÕ³ÏÝ»ñÇ íñ³ Ùá¹áõÉÝ»ñÇ Ï³ï»·áñdzÛáõÙ ¶. ¾ÙÇÝ-î»ñÛ³Ý ²Ù÷á÷áõÙ ¸Çï³ñÏíáõÙ ¿ µáÉáñ ûÕ³ÏÝ»ñÇ íñ³ Ùá¹áõÉÝ»ñÇ M od ϳﻷáñdzÝ: ²Û¹ ϳﻷáñdzÛÇ ûµÛ»ÏïÝ»ñÁ µáÉáñ ³ÛÝåÇëÇ ( A; U ) ½áõÛ·»ñÝ »Ý, áñï»Õ U -Ý ³ëáódzïÇí ûÕ³Ï ¿ ¨ ³Ýå³ÛÙ³Ý ã¿, áñ áõݻݳ Ùdzíáñ, ÇëÏ A-Ý` ³ç U -Ùá¹áõÉ : ÀݹëÙÇÝ, ( A; U ) Ùá¹áõÉÇó ¹»åÇ ( B; V ) Ùá¹áõÉ ÙáñýǽÙÝ»ñÇ µ³½ÙáõÃÛáõÝÁ µ³Õϳó³Í ¿ ( 'A; 'U ) ½áõÛ·»ñÇó, áñï»Õ 'A-Ý ³µ»ÉÛ³Ý A ËÙµÇ ÑáÙáÙáñýǽ٠¿ ¹»åÇ B ËáõÙµ, 'U -Ý U ûÕ³ÏÇ ÑáÙáÙáñýǽ٠¿ ¹»åÇ V ûÕ³Ï ¨ ( a ¢ u) 'A = a'A ¢ u'U , a 2 A, u 2 U : ²µ»ÉÛ³Ý ËÙµ»ñÇ Ab ϳﻷáñÇ³Ý ¨ ³ëáódzïÇí ûÕ³ÏÝ»ñÇ As ϳﻷáñÇ³Ý Mod- Ç ÉñÇí »Ýóϳﻷáñdzݻñ »Ý, ÙÇÝã¹»é Mod ¡ U ϳﻷáñÇ³Ý ýÇùëí³Í U ûÕ³ÏÇ íñ³ ³ç Ùá¹áõÉÝ»ñÇ Ï³ï»·áñÇ³Ý ¿, áñï»Õ U -Ý ó³Ýϳó³Í ³ëáódzïÇí ûÕ³Ï ¿` Mod-Ç »Ýóϳﻷáñdz: ú·ï³·áñÍ»Éáí Mod ϳﻷáñdzÛÇ »ÝóϳﻷáñdzݻñÇ» ”Áëï ß»ñï»ñÇ” Ý»ñϳ۳óÙ³Ý Ñ»ÕÇݳÏÇ ÏáÕÙÇó ³é³ç³ñÏí³Í Ù»Ãá¹Á, Ñݳñ³íáñ ¹³ñÓ³í Ýϳñ³·ñ»É ³Û¹ ϳﻷáñdzÛÇ é³¹ÇϳÉÝ»ñÁ ¨ ÙÇÝãé³¹ÇϳÉÝ»ñÁ: ¸ñ³Ýù Ýϳñ³·ñí³Í »Ý ³ëáódzïÇí ûÕ³ÏÝ»ñÇ ¨ ýÇùëí³Í ûÕ³ÏÇ íñ³ Ùá¹áõÉÝ»ñÇ é³¹ÇϳÉÝ»ñÇ, ѳٳå³ï³ë˳ݳµ³ñ, ÙÇÝãé³¹ÇϳÉÝ»ñÇ Ñ³Ù³Ó³ÛÝ»óí³Í, ³ÛëÇÝùÝ, ѳٳå³ï³ëË³Ý å³ÛÙ³ÝÝ»ñÇÝ µ³í³ñ³ñáÕ Ñ³Ù³Ï³ñ·»ñÇ û·ÝáõÃÛ³Ùµ: Ðàäèêàëû è ïðåäðàäèêàëû â êàòåãîðèè ìîäóëåé íàä âñåìè êîëüöàìè Ã. Ýìèí-Òåðüÿí (Ýìèí) Àííîòàöèÿ Ðàññìàòðèâàåòñÿ êàòåãîðèÿ Mod ìîäóëåé íàä âñåìè êîëüöàìè. Îáúåêòû ýòîé êàòåãîðèè - âñåâîçìîæíûå ïàðû ( A; U ) , ãäå U - àññîöèàòèâíîå êîëüöî, íå îáÿçàòåëüíî ñ åäèíèöåé, A-ïðàâûé U -ìîäóëü. Ìíîæåñòâî ìîðôèçìîâ ìîäóëÿ ( A; U ) â ìîäóëü ( B; V ) ñîñòîèò èç ïàð ( 'A; 'U ) , ãäå 'A - ãîìîìîðôèçì àáåëåâîé ãðóïïû A â àáåëåâó ãðóïïó B, à 'U - ãîìîìîðôèçì êîëüöà U â êîëüöî V , ïðè÷åì ( a ¢ u ) 'A = a 'A ¢ u 'U , a 2 A, u 2 U. Êàòåãîðèÿ àáåëåâûõ ãðóïï Ab è êàòåãîðèÿ àññîöèàòèâíûõ êîëåö As ÿâëÿþòñÿ ïîëíûìè ïîäêàòåãîðèÿìè êàòåãîðèè M od. Äëÿ ëþáîãî àññîöèàòèâíîãî êîëüöà U êàòåãîðèÿ M od ¡ U ïðàâûõ ìîäóëåé íàä ôèêñèðîâàííûì êîëüöîì U ÿâëÿåòñÿ ïîäêàòåãîðèåé êàòåãîðèè M od. Ñ ïîìîùüþ ïðåäëîæåííîãî àâòîðîì ìåòîäà ”ïîñëîéíîãî” ïðåäñòàâëåíèÿ èññëåäóåìûõ ïîäêàòåãîðèé êàòåãîðèè M od îïèñàíû ðàäèêàëû è ïðåäðàäèêàëû ýòîé êàòåãîðèè. Îíè îïèñàíû ñ ïîìîùüþ ñîãëàñîâàííûõ, òî åñòü, óäîâëåòâîðÿþùèõ íåêîòîðûì óñëîâèÿì ñèñòåì ðàäèêàëîâ, ñîîòâåòñòâåííî, ïðåäðàäèêàëîâ êàòåãîðèé àññîöèàòèâíûõ êîëåö è ìîäóëåé íàä ôèêñèðîâàííûì êîëüöîì.