Начиная с начала 2000 года осуществляется внедрение GHIS в здравоохранении, в рамках принятого проекта о реформирование информ Mathematical Problems of Computer Science 39, 125--128, 2013. 125 Moving Objects Detection on Colored Video Images Suren B. Alaverdyan Institute for Informatics and Automation Problems of NAS RA e-mail: souren@ipia.sci.am Abstract The background covering formulas of images are obtained. With their help the algorithm of detection of moving objects on colored video images is given. Keywords: image, detection. 1. Introduction When solving various problems of colored image processing, the image is represented in a gray scale ( ) ⁄ or to accelerate processing and reduce the used memory excluding the possible damage of the original image (loss of contour points or appearance of false contour points). In Fig. 2 the difference between the original and the gray scale images is given, where the values of ( )-th point are as follows: | | | | | | Fig 1. Original Fig. 2. Difference It is clear that the components artificially added to the original image, influence the result of the problem being solved. . While obtaining the image in image processing theory, the image device accuracy, image quantization and, certainly, the environment which influences the formation of the image noise, are principally important. , Moreover, since for the problems the detection of objects on images or their segmentation the problem of general filters' synthesis is not solved, then in practice to mailto:souren@ipia.sci.am Moving Objects Detection on Colored Video Images 126 solve these problems different approaches are used - -threshold restriction, brightness interval transformation, cluster analysis etc. – [1, 2]. In this article a new approach of moving objects detection on video images, obtained by a stationary camera, is given. 2. Image Background Change by Standard Image A mathematical definition of the background does not exist, it is interpreted as the background of image [3, 4]. Let { ̅̅ ̅̅ ̅ ̅̅̅̅̅} ( ), (red, green and blue colour channels of a point), and the standard image with the size . To reduce the background of the image background of the image we find the following statistical characteristics of both images: mean values ∑ ∑ , ∑ ∑ , mean square deviations √ ∑ ( ) , √ ∑ ( ) . The general formula for the new values of the image background of the image represented as ( ) , ̅̅̅̅ ̅̅ ̅̅̅̅ ̅ , (1) let if and let if Below we give an example of the background change by formula (1). Fig. 3. Original image Fig. 4. Standard image Fig. 5. Resulting image Thus, the parameters ( , ) can determine the approximate value of the image background. Considering statistical moments of higher orders one can obtain a more exact value of background. 3. Object Detecting To avoid artificially covering the image with new data (Fig. 2) we do not use in this work a gray scale image to detect objects. There are two principal methods used to detect moving video objects on video streams: determination of image stationary part and statistical methods with threshold restriction. In this work to detect the objects the original image is transformed into a negative image background space by formula (1) to reduce the probability of loss of dark colored objects. Since the negative mean value is equal to the formula (1) takes the following form: S. Alaverdyan 127 ( ) , ̅̅̅̅ ̅̅ ̅̅̅̅ ̅ . To obtain a binary (black-white) image, calculate the inter frame gradient using the following formula: {| ( ) ( ) | ( ) } , ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅ where ( ) √∑ ∑ ( ( ) ( ) ) , - is the frame number, ( ) interval of ( ) point is used. The threshold is determined as follows: ∑ ∑ or . Both of threshold values give good results. Binary image { ̅̅̅̅ ̅̅ ̅̅̅̅ ̅} is obtained as follows: { Below the results of object detecting algorithms are given. Fig. 6. Original image with negative background Fig. 7. Objects Fig. 8. Original image with negative background Fig. 9. Objects Moving Objects Detection on Colored Video Images 128 References [1] У. Прэтт, Цифровая обработка изображений, М. Мир, т.2, 1982. [2] T. Ko, S. Soatto and D. Estrin, “Background subtraction on distributions”, Proceedings of the 10th European Conference on Computer Vision: Part III, pp. 276-289, 2008. [3] V. Konushin and A. Konushin, “Improvement of background subtraction by mask constraints”, Proc. GraphiCon, pp. 96-99, 2010. [4] P Viola, M Jones, “Rapid object detection using a boosted cascade of simple features”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 511-518, 2001. Submitted 30.11.2012, accepted 15.02.2013. Տեսաշարում գունավոր պատկերների վրա շարժվող օբյեկտների հայտնաբերում Ս. Ալավերդյան Ամփոփում Աշխատանքում ստացված են պատկերների ֆոնային տեղափոխության բանաձևեր, բերված է նրանց կիրառության միջոցով տեսաշարում գունավոր պատկերների վրա շարժվող օբյեկտների հայտնաբերման ալգորիթմը: Обнаружение движущихся объектов на видеоизображениях С. Алавердян Аннотация Приведен новый алгоритм нахождения движущихся объектов на цвeтных видеоизображениях. Приведены также результаты работы алгоритма.