Nellysbornik0107.DVI Mathematical Problems of Computer Science 29, 2007, 58{65. Stability and Oscillations in Spatially-extended M odels of P opulation I nter action N e lli A . A ja b ya n Institue for Informatics and Automation Problems of NAS of RA e-mail: najabyan@ipia.sci.am Abstract Conditions for species coexistence in a simple patch-occupancy metapopulation model are derived. The model is described by a system of ordinary di®erential equa- tions. The ecological stability of the community is interpreted in terms of conservation of species composition in the model. The limits for the stability are related to the boundness of the model solutions in phase space. Analytical results show that there are regions in the parameter space where the species coexistence can occur depending on characteristics of competing species interaction and structure of the links connecting isolated patches. Refer ences [1 ] D e -A n g e lis D . L . D yn a m ic s o f N u t r ie n t Cyc lin g a n d Fo o d we b s . Chapman and Hall P ublish. 1 9 9 2 . [2 ] A u g e r P . B e h a vio r a l Ch o ic e s B a s e d o n P a t c h S e le c t io n : a Mo d e l u s in g A g g r e g a t io n Me t h o d s . In : M athematical B iosciences, 1 5 7 , 1 9 9 9 , p p . 1 8 6 -2 1 6 . [3 ] Me d vin s ky A . B . e t a l. S p a t ia lly S t r u c t u r e d P la n kt o n d yn a m ic s , in :Nonlinear D ynamics in the L ife and Social sciences. Science Series, v. 3 2 0 , 2 0 0 0 , p p . 3 8 3 -3 9 3 . [4 ] Fie d le r B . Glo b a l b ifu r c a t io n o f p e r io d ic s o lu t io n s wit h s ym m e t r y. L ect. Notes in M ath- ematics. S p r in g e r -V e r la g ., B e r lin , N e w-Y o r k, To kyo , 1 9 8 8 , v. 1 3 0 9 , p p . 1 -1 4 0 . [5 ] L o g o fe t D . O., S vir e z e v Y u . M. E c o lo g ic a l s t a b ilit y a n d L a g r a n g e s t a b ilit y. A n e w a p - p r o a c h t o t h e p r o b le m . In : P roblems of E cological M onitoring and E cosystems M odeling. S t P e t e r s b u r g , Gid r o m e t iz d a t , v. 7 , 1 9 8 5 , p p . 2 5 3 -2 5 8 . ( in R u s s ia n ) . [6 ] A ja b ja n N . A ., L o g o fe t D . O. P o p u la t io n S iz e D yn a m ic s in Tr o p h ic Ch a in s ., in : P roblems of E cological M onitoring and E cosystems M odeling. S t . P e t e r s b u r g , Gid r o m e t iz d a t , v. 1 4 , 1 9 9 1 , p p . 1 3 5 -1 5 2 ( in R u s s ia n ) [7 ] S vir e z e v Y u . M., L o g o fe t D . O. Stability of B iological Communities. Mo s c o w, 1 9 7 8 ., p p . 3 5 2 ( in R u s s ia n ) . 5 8 N. A. Ajabyan 5 9 [8 ] A le xa n d e r J. C., A u c h m u t y G. Glo b a l B ifu r c a t io n o f P h a s e -L o c ke d Os c illa t o r s . Archive for rational M echanics and Analysis. Springer-Velag., B e r lin , 1 9 8 8 , v. 9 3 , p p . 2 5 3 -2 7 0 . λÝë³µ³Ý³Ï³Ý ѳٳϻóáõÃÛáõÝÝ»ñÇ Ùá¹»ÉÝ»ñÇ Ï³ÛáõÝáõÃÛáõÝÁ ³Ýѳٳë»é ÙÇç³í³ÛñáõÙ Ü. ². ²ç³µÛ³Ý ²Ù÷á÷áõÙ ²ñï³Íí³Í »Ý å³ÛÙ³ÝÝ»ñ áã ѳٳë»é ÙÇç³í³ÛñáõÙ å³ñ½ ÁݹѳÝñ³óí³Í Ï»Ýë³Ñ³ÝñáõÃÛ³Ý ï»ë³ÏÝ»ñÇ ·áÛ³ï¨Ù³Ý ѳٳñ: ü³½³ÛÇÝ ï³ñ³ÍáõÃÛáõÝáõÙ Ùá¹»ÉÇ ÉáõÍáõÙÝ»ñÇ ë³Ñٳݳ÷³ÏáõÃÛ³Ý å³ÛÙ³ÝÝ»ñáí »Ý ³ñï³Ñ³ÛïíáõÙ ¿ÏáÉá·Ç³Ï³Ý ϳÛáõÝáõÃÛ³Ý ë³ÑÙ³ÝÝ»ñÁ: