D:\sbornik\...\DCT2_cor.DVI Mathematical Problems of Computer Science 28, 2007, 7{17. Fast DCT -2 T r ansfor m via H adamar d T r ansfor m A r m e n P e t r o s ya n a n d H a ko b S a r u kh a n ya n Institue for Informatics and Automation Problems of NAS of RA e-mail: hakop@ipia.sci.am Abstract In this paper we present Walsh-Hadamard transform (WHT) based on the fast discrete cosine transform (DCT-2) algorithm. The basic idea of this algorithm is the following: at ¯rst we compute the WHT coe±cients, then using so called conversion matrix we convert these coe±cients to the transform domain coe±cients. Refer ences [1 ] A g a ia n S .S . H a d a m a r d Ma t r ic e s a n d Th e ir A p p lic a t io n s . L e c t u r e N o t e s in Ma t h e m a t - ic s , vo l. 1 1 6 8 , 1 9 8 5 . [2 ] R ys z a r d S t a s in s ki, Ja n u s z K o n r a d . A N e w Cla s s o f Fa s t S h a p e -A d a p t ive Or t h o g o n a l Tr a n s fo r m s a n d Th e ir A p p lic a t io n t o R e g io n -B a s e d Im a g e Co m p r e s s io n . IE E E Tr a n s . o n Cir c u it s a n d s ys t e m s fo r V id e o Te c h n o lo g y, vo l. 9 , N o . 1 , 1 9 9 9 , p .1 6 -3 4 . [3 ] M. B a r a z a n d e -P o u r , Jo n W . Ma r k. A d a p t ive MH D CT. IE E E , 1 9 9 4 , p .9 0 -9 4 . [4 ] G.R . R e d d y, P . S a t ya n a r a ya n a . In t e r p o la t io n A lg o r it h m U s in g W a ls h -H a d a m a r d a n d D is c r e t e Fo u r ie r / H a r t le y Tr a n s fo r m s . IE E E , 1 9 9 1 , p . 5 4 5 -5 4 7 . [5 ] Ch e u n g -Fa t Ch a n . E ± c ie n t Im p le m e n t a t io n o f a Cla s s o f Is o t r o p ic Qu a d r a t ic Filt e r s b y U s in g W a ls h -H a d a m a r d Tr a n s fo r m . IE E E In t . S ym p o s iu m o n Cir c u it s a n d S ys t e m s , Ju n e 9 -1 2 , H o n g K o n g , 1 9 9 7 , p . 2 6 0 1 -2 6 0 4 . [6 ] B r ia n K . H a r m s , Jin B a e P a r k, S t e p h a n A . D ye r . Op t im a l Me a s u r e m e n t Te c h n iqu e s U t iliz in g H a d a m a r d Tr a n s fo r m s . IE E E Tr a n s . o n In s t r u m e n t a t io n a n d Me a s u r e m e n t , vo l. 4 3 , N o . 3 , Ju n e 1 9 9 4 , p . 3 9 7 -4 0 2 . [7 ] Ch e n A n s h i, L i D i, Zh o u R e n z h o n g . A R e s e a r c h o n Fa s t H a d a m a r d Tr a n s fo r m ( FH T) D ig it a l S ys t e m s . IE E E TE N CON 9 3 / B e ijin g , 1 9 9 3 , p .5 4 1 -5 4 6 . [8 ] S a r u kh a n ya n H .G. H a d a m a r d m a t r ic e s : Co n s t r u c t io n m e t h o d s a n d a p p lic a t io n s . In P r e c . o f Th e W o r ks h o p o n Tr a n s fo r m s a n d Filt e r B a n ks , Fe b . 2 1 -2 7 , Ta m p e r e , Fin la n d , 1 9 9 8 , 3 5 p . [9 ] A h m e d , R a o . Or t h o g o n a l Tr a n s fo r m s fo r D ig it a l S ig n a l P r o c e s s in g . S p r in g e r - V e r la g , N e w Y o r k, 1 9 7 5 . 7 8 Fast DCT-2 Transform via Hadamard Transform [1 0 ] A g a ia n S .S ., S a r u kh a n ya n H .G. H a d a m a r d m a t r ic e s r e p r e s e n t a t io n b y ( ¡1 ; +1 ) ¡ve c t o r s . P r o c . o f In t . Co n f. d e d ic a t e d t o H a d a m a r d p r o b le m 's c e n t e n a r y, A u s t r a lia , 1 9 9 3 , 1 p . [1 1 ] S a r u kh a n ya n H .G. D e c o m p o s it io n o f t h e H a d a m a r d m a t r ic e s a n d fa s t H a d a m a r d t r a n s - fo r m . Co m p u t e r A n a lys is o f Im a g e s a n d P a t t e r n s , L e c t u r e N o t e s in Co m p u t e r S c ie n c e , vo l. 1 2 9 6 , 1 9 9 7 , p . [1 2 ] Y a r la g a d d a R a o R .K ., H e r s h e y E .J. H a d a m a r d Ma t r ix A n a lys is a n d S yn t h e s is wit h A p p lic a t io n s a n d S ig n a l/ Im a g e P r o c e s s in g , 1 9 9 7 . [1 3 ] S e b e r r y J., Y a m a d a M. H a d a m a r d Ma t r ic e s , S e qu e n c e s a n d B lo c k D e s ig n s . S u r ve ys in Co n t e m p o r a r y D e s ig n Th e o r y, W ile y-In t e r s c ie n c e S e r ie s in D is c r e t e Ma t h e m a t ic s . Jh o n W ile y, N e w Y o r k, 1 9 9 2 . [1 4 ] S a m a d i S ., S u z u ka ke Y ., Iwa ku r a H . On A u t o m a t ic D e r iva t io n o f Fa s t H a d a m a r d Tr a n s fo r m U s in g Ge n e r ic P r o g r a m m in g . P r o c . 1 9 9 8 IE E E A s ia -P a c ī c Co n fe r e n c e o n Cir c u it a n d S ys t e m s , Th a ila n d , 1 9 9 8 , p . 3 2 7 -3 3 0 . [1 5 ] Ja -L in g W u . B lo c k d ia g o n a l s t r u c t u r e in d is c r e t e t r a n s fo r m s . IE E P r o c e e d in g s , vo l. 1 3 6 , N o . 4 , 1 9 8 9 . DCT-2 ³ñ³· Ó¨³÷áËáõÃÛáõÝ Ð³¹³Ù³ñÇ Ó¨³÷áËáõÃÛ³Ùµ ². ä»ïñáëÛ³Ý, Ð. ê³ñáõ˳ÝÛ³Ý ²Ù÷á÷áõÙ Ðá¹í³ÍáõÙ Ý»ñϳ۳óí³Í ¿ àõáÉß-г¹³Ù³ñÇ Ó¨³÷áËáõÃÛ³Ý ÏÇñ³éٳٵ DCT-2 Ó¨³÷áËáõÃÛ³Ý ³ñ³· ³É·áñÇÃÙÁ: ²É·áñÇÃÙÇ ÑÇÙÝ³Ï³Ý ÇÙ³ëïÁ Ñ»ï¨Û³ÉÝ ¿ª Ý³Ë Ñ³ßííáõÙ »Ý àõáÉß-г¹³Ù³ñÇ Ó¨³÷áËáõÃÛ³Ý ·áñͳÏÇóÝ»ñÁ, ³ÛÝáõÑ»ï¨, ³Ûëå»ë Ïáãí³Í ÏáÝí»ñï³óÇáÝ Ù³ïñÇóÇ û·ÝáõÃÛ³Ùµ áñáßíáõÙ »Ý DCT-2 Ó¨³÷áËáõÃÛ³Ý ·áñͳÏÇóÝ»ñÁ: