Microsoft Word - Article.doc Mathematical Problems of Computer Science 28, 2007, 88 – 93. 88 Technique for Coherent Segmentation of Image and Applications David G. Asatryan1, Grigor S. Sazhumyan2, Hayk S. Shahverdyan3 1,2 Institute for Informatics and Automation Problems of NAS of RA 3 State Engineering University of Armenia Abstract In this paper we describe a software tool created according to an algorithm, which was proposed earlier by authors for coherent and multi-scale segmentation of an image. The algorithm is based on the finding of all connected segments, the pixels of which belong to the same, determined beforehand and adjustable levels of intensity. Various modes of operation of the software are described, which allows to separate segments or to carry out full segmentation, as well as to transfer the parameters of one segment to others and to estimate quality of the carried out segmentation. It is shown that the segmentation procedure is able to determine simultaneously edges and contours in the image. The results of the computing experiments showing efficiency of developed system are given. References [1] W.Pratt. Digital Image Processing. 3-rd ed., J.Wiley & Sons, Inc., N.Y., 2001. [2] I. Pitas. Digital Image Processing Fundamentals. Thessaloniki, 1998. [3] R. Gonzalez, R.Woods. Digital Image Processing, 2-nd edition, Prentice-Hall, Englewood Cliffs, NJ, 2002. [4] J. Canny. “A computational approach to edge detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698, 1986. [5] D. Asatryan, J. Patera. “Edge Detection Algorithm Based on DCT Continuous Extension Technique”. Proc. of XII Int. Conf. on Symmetry Methods in Physics. Yerevan, 2006, 10p. (To be printed). [6] Д.Асатрян, Г. Сажумян. “Об одном методе пороговой локальной сегментации изображения”. Mathematical Problems of Computer Science, IIAP, Yerevan, Armenia, 26, 2006, pp. 15-20. [7] Г. Сажумян. “Программная система для пороговой сегментации изображения”. Материалы годичной конференции ГИУА, 2006 г., 4 стр. [8] Д. Асатрян, Г. Сажумян. “Метод когерентной сегментации и его приложение к восстановлению поврежденных изображений”. Вестник ГИУА, сер. Моделирование, оптимизация, управление, вып. 9, т. 2, 2006 г., с. 15-21. [9] http://www.berkeley.edu [10] P. Arbel´aez and L. Cohen. Energy partitions and image segmentation. Technical report, CEREMADE, 2003. D. G. Asatryan, G. S. Sazhumyan, H. S. Shahverdyan 89 [11] J. Melonakos, R. Al-hakim,, J. Fallon, A. Tannenbaum. “Knowledge-based segmentation of brain MRI scans using the insight toolkit”. Insight Journal, 2005, http://hdl.handle.net/1926/44. ä³ïÏ»ñÇ ÏáÑ»ñ»Ýï ѳïí³Í³íáñÙ³Ý »Õ³Ý³Ï ¨ ÏÇñ³éáõÃÛáõÝÝ»ñ ¸. ¶. ²ë³ïñÛ³Ý, ¶. ê. ê³ÅáõÙÛ³Ý, Ð. ê. Þ³Ñí»ñ¹Û³Ý ²Ù÷á÷áõÙ ä³ïÏ»ñÇ Ñ³ïí³Í³íáñÙ³Ý ËݹñáõÙ ¹Çï³ñÏí»É »Ý Ýáñ Ùáï»óáõÙ, »Õ³Ý³Ï ¨ ÏÇñ³éáõÃÛáõÝÝ»ñ, Ñ»Ýí³Í å³ïÏ»ñÇ ÏáÑ»ñ»Ýï ïñáÑÙ³Ý íñ³` í³éáõÃÛ³Ý ÙǨÝáõÛÝ ÙÇç³Ï³ÛùÇÝ å³ïϳÝáÕ Ï³å³Ïóí³Í ï³ññ»ñÇ ÁÝïñáõÃÛ³Ùµ: Üϳñ³·ñí»É »Ý ѳٳå³ï³ëË³Ý Íñ³·ñ³ÛÇÝ Ñ³Ù³Ï³ñ·Á ¨ ¹ñ³ ÑÇÙÝ³Ï³Ý ¨ Éñ³óáõóÇã Ñݳñ³íáñáõÃÛáõÝÝ»ñÁ: òáõÛó ¿ ïñí»É, áñ ѳïí³Í³íáñÙ³Ý áÕç ·áñÍÁÝóóÁ áñáßíáõÙ ¿ ÙÇ³Ï å³ñ³Ù»ïñáí` í³éáõÃÛáõÝÝ»ñÇ ÙÇç³Ï³Ûù»ñÇ ù³Ý³Ïáí, ÇÝãÁ Ñݳñ³íáñáõÃÛáõÝ ¿ ï³ÉÇë ¿³å»ë å³ñ½»óÝ»É ¨ ÙdzëÝ³Ï³Ý ¹³ñÓÝ»É Ñ³ïí³Í³íáñÙ³Ý ÁÝóóùÁ, ѳٻٳï»ÉÇ ¹³ñÓÝ»É ï³ñµ»ñ å³ïÏ»ñÝ»ñÇ Ñ³ïí³Í³íáñÙ³Ý ³ñ¹ÛáõÝùÝ»ñÁ ¨ ¹ñ³Ýó Ù»Ïݳµ³ÝáõÃÛáõÝÝ»ñÁ: ´»ñí»É »Ý ï³ñµ»ñ µÝ³·³í³éÝ»ñÇó í»ñóí³Í å³ïÏ»ñÝ»ñÇ Ñ³ïí³Í³íáñÙ³Ý ûñÇݳÏÝ»ñ, áñáÝù ëï³óí»É »Ý ³é³ç³ñÏíáÕ Ñ³Ù³Ï³ñ·Ç û·ÝáõÃÛ³Ùµ: