D:\sbornik\...\CISS3.DVI Mathematical Problems of Computer Science 26, 2006, 82{90. On T esting of H ypotheses for M any I ndependent Objects P a r a n d z e m M. H a ko b ya n Institue for Informatics and Automation Problems of NAS of RA e-mail par h@ipia.sci.am Abstract The problem of many hypotheses testing for a model consisting of three independent objects is considered. It is supposed that M probability distributions are known and each object independently of others follows to one of them. The matrix of asymptotic interdependencies (reliability{reliability functions) of all possible pairs of the error probability exponents (reliabilities) in optimal testing of this model is studied. This problem was introduced (and solved for the case with two given probability distributions) by Ahlswede and Haroutunian. The model with two independent objects with M hypotheses was examined by Haroutunian and Hakobyan. Refer ences [1 ] E . A . H a r o u t u n ia n , " L o g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f m u lt ip le s t a - t is t ic a l h yp o t h e s e s " , P roblems of Control and Information Theory, vo l. 1 9 ( 5 -6 ) , p p . 4 1 3 { 4 2 1 , 1 9 9 0 . [2 ] R . F. A h ls we d e a n d E . A . H a r o u t u n ia n , " Te s t in g o f h yp o t h e s e s a n d id e n t i¯ c a t io n " , E lectronic Notes on D iscrete M athematics, vol. 21, p p . 1 8 5 { 1 8 9 , 2 0 0 5 . [3 ] E . A . H a r o u t u n ia n a n d P . M. H a ko b ya n , " On lo g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l h yp o t h e s is t e s t in g o f t h r e e d is t r ib u t io n s fo r o f in d e p e n d e n t o b je c t s " , M athematical P roblems of Computer Science vol. 24, p p . 7 6 { 8 1 , 2 0 0 5 . [4 ] E . A . H a r o u t u n ia n a n d P . M. H a ko b ya n , " On L A O t e s t in g o f m u lt ip le h yp o t h e s e s fo r p a ir o f o b je c t s " , M athematical P roblems of Computer Science vol. 25, p p . 9 3 { 1 0 1 , 2 0 0 6 . [5 ] L . B ir g ¶ e , " V it e s s e s m a xim a ls d e d ¶ e c r o is s a n c e d e s e r r e u r s e t t e s t s o p t im a u x a s s o c ie ¶ s " . Z. W a h r s c h . ve r w. Ge b ie t e , vo l. 5 5 , p p . 2 6 1 { 2 7 3 , 1 9 8 1 . [6 ] I. Cs is z ¶a r a n d J. K Äo r n e r , Information Theory: Coding Theorems for D iscrete M emo- ryless Systems, A c a d e m ic P r e s s , N e w Y o r k, 1 9 8 1 . 8 2 P. M. Hakobyan 8 3 ´³½Ù³ÏÇ ³ÝÏ³Ë ûµÛ»ÏïÝ»ñÇ Ýϳïٳٵ í³ñϳÍÝ»ñÇ ëïáõ·Ù³Ý Ù³ëÇÝ ö. гÏáµÛ³Ý ²Ù÷á÷áõÙ ¸Çï³ñÏí³Í ¿ µ³½Ù³ÏÇ í³ñϳÍÝ»ñÇ ëïáõ·Ù³Ý ËݹÇñÁ »ñ»ù ³ÝÏ³Ë ûµÛ»ÏïÝ»ñÇó ϳ½Ùí³Í Ùá¹»ÉÇ Ñ³Ù³ñ: M ( ¸ 2 ) ѳí³Ý³Ï³Ý³ÛÇÝ µ³ßËáõٻݻñÁ h³ÛïÝÇ »Ý, ¨ ûµÛ»ÏïÝ»ñÇó Ûáõñ³ù³ÝãÛáõñÁ ³ÝϳËáñ»Ý µ³ßËí³Í Áëï ¿ ¹ñ³ÝóÇó Ù»ÏÇ: ²Ûë Ùá¹»ÉÇ Ñ³Ù³ñ áõëáõÙݳëÇñí»É ¿ ûåïÇÙ³É ï»ëï³íáñÙ³Ý ¹»åùáõÙ µáÉáñ Ñݳñ³íáñ ½áõÛ·»ñÇ ë˳ÉÝ»ñÇ Ñ³í³Ý³Ï³ÝáõÃÛáõÝÝ»ñÇ óáõóÇãÝ»ñÇ (Ñáõë³ÉÇáõÃÛáõÝÝ»ñÇ) ÷áËϳËí³ÍáõÃÛáõÝÁ: Ø»Í Ãíáí ³ÝÏ³Ë ûµÛ»ÏïÝ»ñÇó ϳ½Ùí³Í Ùá¹»ÉÇ µ³½Ù³ÏÇ í³ñϳÍÝ»ñáí ¹»åùÁ ÝáõÛÝå»ë ùÝݳñÏíáõÙ ¿ :