D:\sbornik\...\Termody+.DVI Mathematical Problems of Computer Science 26, 2006, 101{113. Quantum P r ocesses and P ossibility of T heir Contr ol A s h o t S . Ge vo r kya n Institue for Informatics and Automation Problems of NAS of RA e-mail g ashot@sci.am Abstract The dissipation and decoherence (for example, the e®ects of noise in quantum computations), interaction with thermostat or in general with physical vacuum, mea- surement and many other complicated problems of open quantum systems are a con- sequence of interaction of quantum systems with the environment. These problems are described mathematically in terms of complex probabilistic process (CPP). Par- ticularly, treating the environment as a Markovian process we derive an Langevin- SchrÄodinger type stochastic di®erential equation (SDE) for describing the quantum system interacting with environment. For the 1D randomly quantum harmonic os- cillator (QHO) L-Sh equation has a solution in the form of orthogonal CPP. On the basis of orthogonal CPP the stochastic density matrix (SDM) method is developed and in its framework relaxation processes in the uncountable dimension closed system of "QHO+environment" is investigated. With the help of SDM method the thermo- dynamical potentials, like nonequilibrium entropy and the energy of ground state are exactly constructed. The dispersion for di®erent operators is calculated. In particular, the expression for uncertain relations depending on parameter of interaction between QHO and environment is obtained. The Weyl transformation for stochastic operators is speci¯ed. Ground state Winger function is developed in detail. Refer ences [1 ] P r o c e e d in g s o f A d r ia t ic o R e s e a r c h Co n fe r e n c e a n d Min iwo r ks h o p Quantum Chaos, 4 Ju n e { 6 Ju ly 1 9 9 0 , Tr ie s t e , It a ly [2 ] C. P r e s illa , R . On o fr io , U . Ta m b in i, A n n .P h ys ., v. 2 4 8 , p . 9 5 ( 1 9 9 6 ) [3 ] C.W . Ga r d in e r , M.J.Co lle t t , P h ys .R e v. A , v. 3 1 , p . 3 7 6 1 ( 1 9 8 5 ) [4 ] N . Gis in , I.C. P e r c iva l, J.P h ys . A , v. 2 5 , p . 5 6 7 7 ( 1 9 9 2 ) [5 ] N . K n a u f, Y .G. S in a i, e -p r in t N 2 3 2 h t t p :/ / www.m a t h .t u -b e r lin .d e [6 ] A .V . B o g d a n o v, A .S . Ge vo r kya n , P r o c e e d in g s o f In t . W o r ks h o p o n Qu a n t u m S ys t e m s , Min s k, B e la r u s , p . 2 6 ( 1 9 9 6 ) [7 ] A .V . B o g d a n o v, A .S . Ge vo r kya n , A .G. Gr ig o r ya n , A MS / IP S t u d ie s in A d va n c e d Ma t h - e m a t ic s , v. 1 3 , p . 8 1 ( 1 9 9 9 ) [8 ] A .V . B o g d a n o v, A .S . Ge vo r kya n , A .G. Gr ig o r ya n , S .A . Ma t ve e v, In t . Jo u r n . B ifu r c a t io n a n d Ch a o s , v. 9 , N . 1 2 , p . 9 ( 1 9 9 9 ) 1 0 1 1 0 2 Quantum Processes and Possibility of Their Control [9 ] A .S . Ge vo r kya n , E xa c t ly s o lva b le m o d e ls o f s t o c h a s t ic qu a n t u m m e c h a n ic s wit h in t h e fr a m e wo r k o f L a n g e vin -S c h r e o d in g e r t yp e e qu a t io n , A n a lys is a n d a p p lic a t io n s . P r o c e e d - in g o f t h e N A TO A d va n c e d r e s e r a c h wo r s ks h o p , Y e r e va n 2 0 0 2 , E d s . b y B a r s e g ia n G. a n d B e g e h r H ., N A TO S c ie n c e p u b lic a t io n s , p p . 4 1 5 -4 4 2 , K lu we r , ( 2 0 0 4 ) . [1 0 ] A . N . B a z ', Y a . B . Ze l'd o vic h a n d A . M. P e r e lo m o v, Scattering reactions and D ecays in Nonrelativistic Quantum M echanics, ( in R u s s ia ) , " N a u ka " , Mo s c o w, 1 9 7 1 . [1 1 ] D .N . Zu b a r e v, Nonequilibrium statistical thermodinamics, N a u ka , 1 9 7 1 ( in r u s s ia n ) . [1 2 ] I.M. L ifs h it z , S .A .Gr e d e s ku l a n d L .P . P a s t u r , Introduction to the Theory of Non-R egular Systems, ( in R u s s ia ) , " N a u ka " , Mo s c o w, 1 9 8 2 . [1 3 ] C.W . Ga r d in e r , Handbook of Stochastic M ethods for P hysics, Chemistry and Natural Sciences, S p r in g e r -V e r la g B e r lin N e w-Y o r k To kyo , 1 9 8 5 [1 4 ] J.Glim m , A .Ja ®e , Quantum P hysics. A F unctional Integral P oint of View, S p r in g e r - V e r la g , 1 9 8 1 . [1 5 ] W .M. It a n o , D .J. H e in z e n , J.J. B o llin g e r a n d D .J. W in e la n d , P hys.R ev. A, v. 4 1 , p . 2 2 9 5 ( 1 9 9 0 ) . [1 6 ] V . Go r in i, A . K o s s a ko ws ki a n d E .C.G. S u d a r s h a n , J .M ath.P hys., v. 1 7 , p . 8 2 1 ( 1 9 7 6 ) . [1 7 ] G. L in d b la d , Comm. M ath. phys., v. 4 8 , p . 1 1 9 ( 1 9 7 6 ) . ä³ï³Ñ³Ï³Ý ùí³Ýï³ÛÇÝ ÁÝóóùÝ»ñÁ ¨ Ýñ³Ýó ջϳí³ñÙ³Ý Ñݳñ³íáñáõÃÛáõÝÝ»ñÁ ². ¶¨áñ·Û³Ý ²Ù÷á÷áõ٠سñáõÙÝ áõ ¹»ÏáÑ»ñ»ÝïáõÃÛáõÝÁ, ÷á˳½¹»óáõÃÛáõÝÁ ûñÙáëï³ïÇ Ï³Ù ÁݹѳÝáõñ ¹»åùáõÙ ýǽÇÏ³Ï³Ý í³ÏáõÙÇ Ñ»ï, ã³÷áõÙÝ»ñÁ ¨ µ³ó ùí³Ýï³ÛÇÝ Ñ³Ù³Ï³ñ·»ñÇ ³ÛÉ µ³ñ¹ åñáµÉ»ÙÝ»ñÁ, í»ñçÇÝ Ñ³ßíáí ùí³Ýï³ÛÇÝ Ñ³Ù³Ï³ñ·»ñÇ Ýñ³Ýó ßñç³Ï³ÛùÇ Ñ»ï ÷á˳½¹»óáõÃÛ³Ý ³ñ¹ÛáõÝù »Ý: ²Ûë åñáµÉ»ÙÝ»ñÁ ٳûٳïÇÏáñ»Ý Ýϳñ³·ñíáõÙ »Ý ÏáÙåÉ»ùë ѳí³Ý³Ï³ÛÇÝ ÁÝóóùÝ»ñÇ É»½íáí (ÎäÀ): سëݳíáñ³å»ë Ýϳñ³·ñ»Éáí ßñç³Ï³ÛùÁ, ÇÝãå»ë سñÏáíÛ³Ý ÁÝóóù, ùí³Ýï³ÛÇÝ Ñ³Ù³Ï³ñ·Ç ßñç³Ï³ÛùÇ Ñ»ï ÷á˳½¹»óáõÃÛ³Ý Ýϳñ³·ñáõÃÛ³Ý Ñ³Ù³ñ ³ñï³Í»É »Ýù ȳÝÅ»í»Ý-Þñ»¹ÇÝ·»ñ ïÇåÇ å³ï³Ñ³Ï³Ý ¹Çý»ñ»ÝóÇ³É Ñ³í³ë³ñáõÙ (ä¸Ð). òáõÛó ¿ ïñí³Í, áñ å³ï³Ñ³Ï³Ý 1D ùí³Ýï³ÛÇÝ Ý»ñ¹³ßÝ³Ï ï³ï³Ý³ÏÁ (øÜî) È-Þñ»¹ ѳí³ë³ñÙ³Ý ßñç³Ý³ÏÝ»ñáõÙ áõÝÇ ÉáõÍáõÙÝ»ñ‘ ûñÃá·áÝ³É ÎÐÀ ï»ëùáí: úñÃá·áÝ³É ÎÐÀ-Ç Ñ»ÝùÇ íñ³ ½³ñ·³óí³Í ¿ å³ï³Ñ³Ï³Ý ËïáõÃÛ³Ý Ù³ïñÇó³ÛÇ Ù»Ãá¹ (äÊØ), áñÇ ßñç³Ý³ÏÝ»ñáõ٠ϳï³ñí³Í ¿ ³Ýѳßí»ÉÇ ã³÷áճϳÝáõÃÛ³Ý ÷³Ï ѳٳϳñ·Ç »øÜî+Þñç³Ï³Ûù» ѻﳽáïáõÃÛáõÝÁ: äÊØ Ù»Ãá¹Ç û·ÝáõÃÛ³Ùµ ûñÙá¹ÇݳÙÇÏ³Ï³Ý åáï»ÝódzÉÝ»ñÁ‘ ÝÙ³Ý áãѳí³ë³ñ³ÏßÇé ¿ÝïñáådzÛÇ ¨ ÑÇÙÝ³Ï³Ý íÇ׳ÏÇ ¿Ý»ñ·Ç³ÛÇ, ×ß·ñÇï ϳéáõóí³Í »Ý: гßí³Í »Ý ûå»ñ³ïáñÝ»ñÇ ¹Çëå»ñëdzݻñÁ: سëݳíáñ³å»ë ³ÝáñáßáõÃÛáõÝÝ»ñÇ ³éÝãáõÃÛáõÝÝ»ñÇ Ñ³Ù³ñ, ϳËí³Í øÜî-Ç ßñç³Ï³ÛùÇ Ñ»ï ÷á˳½¹»óáõÃÛ³Ý å³ñ³Ù»ïñÇó, ëï³óí³Í »Ý ³ñï³Ñ³ÛïáõÃÛáõÝÝ»ñ: àñáßí³Í ¿ ì»ÛÉÇ Ó¨³÷áËáõÃÛáõÝÁ å³ï³Ñ³Ï³Ý ûå»ñ³ïáñÝ»ñÇ Ñ³Ù³ñ: ÐÇÙÝ³Ï³Ý íÇ׳ÏÇ ìÇ·Ý»ñÇ ýáõÝÏóÇ³Ý áõëáõÙݳëÇñí³Í ¿ Ù³Ýñ³Ù³ëÝ: