D:\sbornik\...\NOIC.DVI Mathematical Problems of Computer Science 25, 2006, 92{100. On LAO T esting of M ultiple H ypotheses for P air of Objects E vg u e n i A . H a r o u t u n ia n a n d P a r a n d z e m M. H a ko b ya n Institue for Informatics and Automation Problems of NAS of RA e-mail evhar@ipia.sci.am, par h@ipia.sci.am Abstract Many hypotheses testing for a model consisting of two independent by functioning objects is considered. It is known that M(¸ 2) probability distributions are given and objects independently of other follows to one of them. The matrix of asymptotic interdependencies (reliability{reliability functions) of all possible pairs of the error probability exponents (reliabilities) in optimal testing for this model is studied. This problem was introduced (and solved for the case with two given probability distributions) by Ahlswede and Haroutunian. The situation with three hypotheses was examined by Haroutunian and Hakobyan. Refer ences [1 ] R . F. A h ls we d e a n d E . A . H a r o u t u n ia n , " Te s t in g o f h yp o t h e s e s a n d id e n t i¯ c a t io n " , E lectronic Notes on D iscrete M athematics, vol. 21, p p . 1 8 5 { 1 8 9 , 2 0 0 5 . [2 ] R . F. A h ls we d e a n d E . A . H a r o u t u n ia n , " On S t a t is t ic a l H yp o t h e s e s Op t im a l Te s t in g a n d Id e n t ī c a t io n " . M athematical P roblems of Computer Science 24, p p . 1 6 { 3 3 , 2 0 0 5 . [3 ] E . A . H a r o u t u n ia n , " R e lia b ilit y in Mu lt ip le H yp o t h e s e s Te s t in g a n d Id e n t i¯ c a t io n P r o b le m s " . P r o c e e d in g s o f t h e N A TO A S I, Y e r e va n , 2 0 0 3 . N A TO S c ie n c e S e r ie s III: Co m p u t e r a n d S ys t e m s S c ie n c e s { vo l. 1 9 8 , p p . 1 8 9 { 2 0 1 . IOS P r e s s , 2 0 0 5 . [4 ] R . E . B e c h h o fe r , J. K ie fe r , a n d M. S o b e l, S e qu e n t ia l id e n t ī c a t io n a n d r a n kin g p r o c e - d u r e s . Th e U n ive r s it y o f Ch ic a g o P r e s s , Ch ic a g o , 1 9 6 8 . [5 ] R . F. A h ls we d e a n d I. W e g e n e r , S e a r c h p r o b le m s . W ile y, N e w Y o r k, 1 9 8 7 . [6 ] E . A . H a r o u t u n ia n , " L o g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f m u lt ip le s t a - t is t ic a l h yp o t h e s e s " , P roblems of Control and Information Theory, vo l. 1 9 ( 5 -6 ) , p p . 4 1 3 { 4 2 1 , 1 9 9 0 . [7 ] E . A . H a r o u t u n ia n a n d P . M. H a ko b ya n , " On lo g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l h yp o t h e s is t e s t in g o f t h r e e d is t r ib u t io n s fo r p a ir o f in d e p e n d e n c e o b je c t s " , M athemat- ical P roblems of Computer Science vol. 24, p p . 7 6 { 8 1 , 2 0 0 5 . 9 2 E. A. Haroutunian and P. M. Hakobyan 9 3 [8 ] I. Cs is z ¶a r a n d J. K Äo r n e r , Information Theory: Coding Theorems for D iscrete M emo- ryless Systems, A c a d e m ic P r e s s , N e w Y o r k, 1 9 8 1 . [9 ] E . A . H a r o u t u n ia n , " A s ym p t o t ic a lly o p t im a l t e s t in g o f m a n y s t a t is t ic a l h yp o t h e s e s c o n c e r n in g Ma r ko v c h a in " , 5th Intern. Vilnius Conference on P robability Theory and M athem. Statistics, vo l. 1 , ( A -L ) , p p . 2 0 2 { 2 0 3 , 1 9 8 9 . [1 0 ] E . Tu n c e l, " On e r r o r e xp o n e n t s in h yp o t h e s is t e s t in g " . IE E E Trans. on IT, vo l. 5 1 , n o . 8 , p p . 2 9 4 5 { 2 9 5 0 , 2 0 0 5 . [1 1 ] L . B ir g ¶ e , " V it e s s e s m a xim a ls d e d ¶ e c r o is s a n c e d e s e r r e u r s e t t e s t s o p t im a u x a s s o c ie ¶ s " . Z. W a h r s c h . ve r w. Ge b ie t e , vo l. 5 5 , p p . 2 6 1 { 2 7 3 , 1 9 8 1 . ºñÏáõ ûµÛ»ÏïÝ»ñÇ ½áõÛ·Ç Ýϳïٳٵ µ³½Ù³ÏÇ í³ñϳÍÝ»ñÇ È²ú ëïáõ·Ù³Ý Ù³ëÇÝ º. ². гñáõÃÛáõÝÛ³Ý ¨ ö. Ø. гÏáµÛ³Ý ²Ù÷á÷áõÙ ÈáõÍí³Í ¿ »ñÏáõ ³ÝÏ³Ë ûµÛ»ÏïÝ»ñÇó ϳ½Ùí³Í Ùá¹»ÉÇ Ñ³Ù³ñ µ³½Ù³ÏÇ í³ñϳÍÝ»ñÇ ëïáõ·Ù³Ý ËݹÇñÁ: M ( ¸ 2 ) ѳí³Ý³Ï³Ý³ÛÇÝ µ³ßËáõÙÝ»ñÁ h³ÛïÝÇ »Ý, ¨ ûµÛ»ÏïÝ»ñÇó Ûáõñ³ù³ÝãÛáõñÁ ³ÝϳËáñ»Ý ÁݹáõÝáõÙ ¿ ¹ñ³ÝóÇó Ù»ÏÁ: ²Ûë Ùá¹»ÉÇ Ñ³Ù³ñ áõëáõÙݳëÇñí»É ¿ µáÉáñ Ñݳñ³íáñ ½áõÛ·»ñÇ ë˳ÉÝ»ñÇ Ñ³í³Ý³Ï³ÝáõÃÛáõÝÝ»ñÇ óáõóÇãÝ»ñÇ (Ñáõë³ÉÇáõÃÛáõÝÝ»ñÇ) ÷áËϳËí³ÍáõÃÛáõÝÁ: ²Ûë ËݹÇñÁ ³é³ç³¹ñ»É »Ý (¨ ÉáõÍ»É »ñÏáõ ѳí³Ý³Ï³Ý³ÛÇÝ µ³ßËáõÙÝ»ñÇ ¹»åùÇ Ñ³Ù³ñ) гñáõÃÛáõÝÛ³ÝÁ ¨ ²Éëí»¹»Ý: