D:\sbornik\...\FIR_IIAP.DVI Mathematical Problems of Computer Science 23, 2004, 54{58. On Compensation of Discr ete Four ier T r ansfor m E r r or D a vid G. A s a t r ya n Institute for Informatics and Automation Problems of NAS of RA e-mail dasat@ipia.sci.am Abstract A problem of reduction of the percentage (relative) error, appearing at a ¯nite signal spectrum restoration by means of Discrete Fourier Transform is considered. A method based on using of a ¯nite impulse ¯lter with various impulse responses is o®ered. Depending on errors of the initial spectrum, a percentage error expression derivable after using the ¯ltering is obtained. A criterion for comparison between speci¯ed errors at a large number of discrete points is o®ered. Conditions, when the ¯lter of given response reduces the restoration error module, are obtained. Examples with uniform window and some ¯nite functions of standard type are considered. Keywords - FFT, discretization error, spectrum, spectrum restoration, ¯nite im- pulse ¯lter, error compensation Refer ences [1 ] L . R . R a b in e r a n d B . Go ld , Th e o r y a n d A p p lic a t io n o f D ig it a l S ig n a l P r o c e s s in g , P r e n t ic e -H a ll, In c ., N e w Je r s e y, 1 9 7 5 . [2 ] D . S la t e r , N e a r -Fie ld A n t e n n a Me a s u r e m e n t s , A r t e c h H o u s e , 1 9 9 1 . [3 ] W .K . P r a t t , D ig it a l Im a g e P r o c e s s in g , N e w Y o r k, W ile y, 1 9 9 1 . [4 ] D .G. A s a t r ya n , " D is c r e t iz a t io n E r r o r o f Im a g e S p e c t r u m R e s t o r a t io n " , P r o c . o f 3 r d In t e r n a t io n a l S ym p o s iu m o n Im a g e a n d S ig n a l P r o c e s s in g a n d A n a lys is ( IS P A 2 0 0 3 ) , R o m e , It a ly, 2 0 0 3 , V .2 , p p . 8 2 6 -8 2 8 . [5 ] D .G. A s a t r ya n a n d L .A . Ta d e vo s ya n , " On E r r o r o f A p p r o xim a t e Ca lc u la t io n o f t h e Fi- n it e Fu n c t io n Fo u r ie r Tr a n s fo r m " . R a d io t e c h n ika ( R a d io t e c h n ic s , Mo s c o w, in R u s s ia n ) , N 1 0 , 1 9 8 8 , p p 3 3 -3 4 . 5 4 D. G. Asatryan 5 5 üáõñÛ»Ç Áݹѳï Ó¨³÷áËáõÃÛ³Ý ë˳ÉÇ Ýí³½»óÙ³Ý Ù³ëÇÝ ¸. ¶. ²ë³ïñÛ³Ý ²Ù÷á÷áõÙ ¸Çï³ñÏí»É ¿ üáõñÛ»Ç Áݹѳï Ó¨³÷áËáõÃÛ³Ý ÙÇçáóáí ëï³óíáÕª í»ñç³íáñ ³½¹³Ýß³ÝÇ ëå»ÏïñÇ í»ñ³Ï³Ý·ÝÙ³Ý Ñ³ñ³µ»ñ³Ï³Ý ë˳ÉÇ Ýí³½»óÙ³Ý ËݹÇñ: ²é³ç³ñÏí»É ¿ ï³ñµ»ñ ÇÙåáõÉë³ÛÇÝ µÝáõó·ñ»ñáí ½ïÇãÝ»ñÇ û·ï³·áñÍÙ³Ý íñ³ Ñ»Ýí³Í Ù»Ãá¹: êï³óí»É ¿ ½ïáõÙÇó Ñ»ïá ³é³ç³ó³Í ѳñ³µ»ñ³Ï³Ý ë˳ÉÇ ³ñï³Ñ³ÛïáõÃÛáõÝÁ: ê˳ÉÝ»ñÁ ѳٻٳï»Éáõ Ýå³ï³Ïáí ³é³ç³ñÏí»É ¿ ã³÷³ÝÇߪ Áݹѳï Ï»ï»ñÇ Ù»Í ù³Ý³ÏÇ Ñ³Ù³ñ: êï³óí»É »Ý ïñí³Í µÝáõó·ñ»ñáí ½ïÇãÇ ÏÇñ³éÙ³Ý ¹»åùáõÙ ë˳ÉÇ Ýí³½»óÙ³Ý å³ÛÙ³ÝÝ»ñÁ: ì»ñç³íáñ ýáõÝÏódzݻñÇ ÙÇ ù³ÝÇ ïÇå»ñÇ Ñ³Ù³ñ µ»ñí»É »Ý ѳí³ë³ñ³ã³÷ ½ïÇãÇ ÏÇñ³éÙ³Ý ûñÇݳÏÝ»ñ: