ARTUR_article.DVI Mathematical Problems of Computer Science 50, 104{106, 2018. I mpr oved M odel of Scheduling Algor ithm A r t u r P . V a r d a n ya n Institute for Informatics and Automation Problems of NAS RA e-mail: artvardanyan@asnet.am Abstract Cluster computing is becoming increasingly practical for high performance comput- ing research and development. A computer cluster is a set of connected computers that work together so that, they can be viewed as a single system. Clusters o®er a scalable means of linking computers together to provide an expansive environment for hosting enterprise applications. As the number of nodes in cluster con¯gurations grows, the cluster administration becomes more challenging. We need to study the challenges of cluster management and to provide a solution. To have an e®ective cluster management we need to have an e®ective task scheduling algorithm. With the explosive growth of information, the demand on computing is sharply increasing. Due to a large number of computing tasks, the scheduling algorithm is an important part of cluster computing and has a great in°uence on the quality of claster service. In cluster computing, some large tasks may occupy too many resources and some small tasks may wait for a long time based on First-In-First-Out (FIFO) scheduling algorithm. This paper provides an overview of an improved scheduling algorithm that shortens the execution time of tasks and increases the resource utilization. Keywords: Cluster computing, Task scheduling, Scheduling algorithm. 1 . In t r o d u c t io n Ta s k S c h e d u lin g is t o a s s ig n e d a t a s k t o a n a va ila b le r e s o u r c e fo r it s e xe c u t io n . Ta s k s c h e d u l- in g is a n im p o r t a n t c o m p o n e n t o f c lu s t e r c o m p u t in g a n d h a s a g r e a t im p a c t o n t h e qu a lit y o f c lu s t e r s e r vic e . Th e b a s ic p r o b le m o f t a s k s c h e d u lin g t h a t n e e d s t o b e s o lve d is a s s ig n - in g t a s ks t o r e s o u r c e s . A s c h e d u le r is wh a t c a r r ie s o u t t h e s c h e d u lin g a c t ivit y. S c h e d u le r s a r e o ft e n im p le m e n t e d s o t h e y ke e p a ll c lu s t e r r e s o u r c e s b u s y ( a s in lo a d b a la n c in g ) , a llo w m u lt ip le u s e r s t o s h a r e c lu s t e r r e s o u r c e s e ®e c t ive ly, o r t o a c h ie ve a t a r g e t qu a lit y o f s e r vic e . FIFO s c h e d u le r is a c o m m o n s c h e d u le r , a n d it c h o o s e s t h e t a s k t o e xe c u t e a c c o r d in g t o t a s k a r r iva l t im e . B y d e fa u lt , FIFO s c h e d u le r d o e s n o t c o n s id e r a t a s ks p r io r it y. U s u a lly, in t a s k s c h e d u lin g a lg o r it h m s , t a s ks a r e d e s c r ib e d b y t wo p a r a m e t e r s : t h e r e s o u r c e u t iliz a t io n p a r a m e t e r a n d t a s k's e xe c u t io n t im e . Ta s k's r e s o u r c e u t iliz a t io n p a r a m e t e r is t h e n u m b e r o f c lu s t e r n o d e s r e qu ir e d t o p e r fo r m t h is t a s k. Ta s k's e xe c u t io n t im e is t h e m a xim u m t im e n e c e s s a r y t o c o m p le t e t h is t a s k. B u t in t h is p a p e r we p r o p o s e a t a s k s c h e d u lin g a lg o - r it h m , in wh ic h t a s ks a r e d e s c r ib e d b y t h r e e p a r a m e t e r s : t h e r e s o u r c e u t iliz a t io n p a r a m e t e r , t a s k's e xe c u t io n t im e a n d t a s k's wa it in g t im e . W h a t is a t a s ks wa it in g t im e ? Ta s ks wa it in g t im e is t h e m a xim u m t im e t h a t t h is t a s k c a n wa it b e fo r e a s s ig n in g t o r u n . To d e s c r ib e e a c h 1 0 4 A. Vardanyan 1 0 5 t a s k we u s e d ( º; ¯; ! ) t r ip le t , wh e r e º is t h e n u m b e r o f c lu s t e r n o d e s r e qu ir e d t o p e r fo r m t h is t a s k, ¯ is t h e m a xim u m t im e n e c e s s a r y t o c o m p le t e t h is t a s k a n d ! is t h e m a xim u m t im e t h a t t h is t a s k c a n wa it b e fo r e a s s ig n in g t o r u n . Fo r t h e va lu e t o t h e n u m b e r o f t h e c lu s t e r n o d e s we t o o k m . Th e ¯ r s t m o m e n t o f t h e t im e we h a ve a qu e u e , in wh ic h t h e r e a r e n t a s ks , t h a t is we h a ve a qu e u e wit h n t h r e e -d im e n s io n a l ve c t o r s . 2 . Mo d e l o f S c h e d u lin g A lg o r it h m fo r FIFO Im p r o ve d a lg o r it h m d e s c r ip t io n : In p u t : n tree-dementional vectors: f ( ºi; ¯i; !i ) ; i = 1 ; 2 ; :::; ng; the number of cluster nodes: m; P r o c e s s : S t e p 1 : declare the variables the number of assigned tasks: k = 0 ; the number of cluster occupied nodes:s = 0 the number of cluster idle nodes: f; S t e p 2 : while s + ºk+1 · 0 then k = k + 1 ; s = s + ºk and serve kth task; S t e p 3 : set f = m ¡ s; S t e p 4 : sort ¯1; ¯2; :::; ¯k in non-decreasing order: ¯i1; ¯i2 ; :::; ¯ik ; S t e p 5 : declare the variables ¿i th moment of the time: ¿i; i = 1 ; 2 ; :::; k; the number of cluster idle nodes at ¿i th moment of the time: mi; i = 1 ; 2 ; :::; k; S t e p 6 : for j = 1 to k set ¿i = ¯ij and mj = f + Pj i=1 mi; S t e p 7 : go through the queue and ¯nd which ( ºj ; ¯j; !j ) so that ºj · f; ¯j < ¿1 for j = k + 1 to n if ºj · f; ¯j < ¿1 then serve jth task and break for; S t e p 8 : check if there are tasks in queue that have the waiting time less than ¿1 for j = k + 1 to n if !j < ¿1 then delete j th task from the queue and rearrange the queue; S t e p 9 : while the queue is not empty at each ¿i; i = 1 ; :::; k point do these cheeks for j = k + i + 1 to n if !j < ¿1 then delete j th task from the queue and rearrange the queue; if ºk+i · mi then serve ( k + i) th task; else for j = k + i + 1 to n if ºj · mi and ¿i + ¯j < ¿i+1 then serve jth task and break for. 3 . Co n c lu s io n W e p r e s e n t e d t h e im p r o ve d m o d e l o f t h e s c h e d u lin g a lg o r it h m , wh ic h d e c r e a s e s t h e e xe c u t io n t im e o f t a s ks a n d in c r e a s e s t h e r e s o u r c e u t iliz a t io n o f t h e s ys t e m . In t h e a b o ve m e n t io n e d a lg o r it h m e a c h t a s k is c h a r a c t e r iz e d b y p a r a m e t e r s ( º; ¯; ! ) , wh e r e º is t h e n u m b e r o f c lu s t e r n o d e s r e qu ir e d t o p e r fo r m t h is t a s k, ¯ is t h e m a xim u m t im e n e c e s s a r y t o c o m p le t e t h is t a s k a n d ! is t h e m a xim u m t im e t h a t t h is t a s k c a n wa it b e fo r e a s s ig n in g t o r u n . N o t e t h a t in 1 0 6 Improved Model of Scheduling Algorithm t h e im p r o ve d a lg o r it h m we h a ve u s e d t h e b a c k¯ ll s c h e d u lin g m o d e l. B a c k¯ ll is a s c h e d u lin g o p t im iz a t io n , wh ic h a llo ws t h e s c h e d u le r t o m a ke b e t t e r u s e o f a va ila b le r e s o u r c e s b y r u n n in g jo b s o u t o f o r d e r . Refer ences [1 ] V . G. S a h a kya n , Y . H . S h o u ko u r ia n , H . V . A s t s a t r ya n , " A b o u t s o m e qu e u e in g m o d e ls fo r c o m p u t a t io n a l g r id s ys t e m s " , M athematical P roblems of Computer Science, Y e r e va n , A r m e n ia , 2 0 1 6 . [2 ] M. L . P in e d o , S c h e d u lin g : Th e o r y, A lg o r it h m s , a n d S ys t e m s , Springer International P ublishing, 5 t h e d ., 2 0 1 6 . [3 ] P . B r u c ke r , S c h e d u lin g A lg o r it h m s , Springer International P ublishing, 5 t h e d ., 2 0 0 7 . Submitted 10.04.2018, accepted 28.11.2018. äɳݳíáñÙ³Ý ³É·áñÇÃÙÇ µ³ñ»É³íí³Í Ùá¹»É ². ì³ñ¹³ÝÛ³Ý ²Ù÷á÷áõÙ Ðá¹í³ÍáõÙ Ý»ñϳ۳óíáõÙ åɳݳíáñÙ³Ý ³É·áñÇÃÙÇ Ùá¹»É, áñÁ Ýí³½»óÝáõÙ ¿ ³é³ç³- ¹Áñ³ÝùÇ Ï³ï³ñÙ³Ý Å³Ù³Ý³ÏÁ ¨ ٻͳóÝáõ٠ѳٳϳñ·Ç é»ëáõñëÝ»ñÇ û·ï³·áñÍáõÙÁ: ²É·áñÇÃÙáõÙ Ûáõñ³ù³ÝãÛáõñ ³é³ç³¹ñ³Ýù µÝáõó·ñíáõÙ ¿ ( º; ¯; ! ) å³ñ³Ù»ïñ»ñáí, áñ- ï»Õ º-Ý ³Û¹ ËݹÇñÁ ëå³ë³ñÏ»Éáõ ѳٳñ å³Ñ³ÝçíáÕ Ïɳëï»ñ³ÛÇÝ Ñ³Ý·áõÛóÝ»ñÇ ù³Ý³ÏÝ ¿, ¯-Ý ³Û¹ ËݹÇñÁ ëå³ë³ñÏ»Éáõ ѳٳñ å³Ñ³ÝçíáÕ ³é³í»É³·áõÛÝ Å³Ù³Ý³ÏÝ ¿, ÇëÏ ! - Ý ³ÛÝ ³é³í»É³·áõÛÝ Å³Ù³Ý³ÏÝ ¿, áñ ³Û¹ ³é³ç³¹ñ³ÝùÁ ϳñáÕ ¿ ëå³ë»É ÙÇÝ㨠ëå³ë³ñÏÙ³Ý áõÕ³ñÏí»ÉÁ: Óëó÷øåííàÿ ìîäåëü àëãîðèòìà ïëàíèðîâàíèÿ À. Âàðäàíÿí Àííîòàöèÿ  ñòàòüå ââîäèòñÿ óëó÷øåííóþ ìîäåëü àëãîðèòìà ïëàíèðîâàíèÿ, êîòîðàÿ óìåíü- øàåò âðåìÿ âûïîëíåíèÿ çàäà÷ è óâåëè÷èâàåò èñïîëüçîâàíèå ðåñóðñîâ ñèñòåìû.  âûøåóïîìÿíóòîì àëãîðèòìå êàæäàÿ çàäà÷à õàðàêòåðèçóåòñÿ ïàðàìåòðàìè ( º; ¯; ! ) , ãäå º-êîëè÷åñòâî óçëîâ êëàñòåðà, íåîáõîäèìûõ äëÿ âûïîëíåíèÿ ýòîé çàäà÷è, ¯- ìàêñèìàëüíîå âðåìÿ, íåîáõîäèìîå äëÿ âûïîëíåíèÿ ýòîé çàäà÷è, à ! -ìàêñèìàëüíîå âðåìÿ, ÷òî ýòà çàäà÷à ìîæåò ïîäîæäàòü äî íàçíà÷åíèÿ äëÿ çàïóñêà.