61 Mathematical Problems of Computer Science 58, 61โ€“66, 2022. doi: 10.51408/1963-0093 UDC 510.64 Proof Complexity of Hard-Determinable Balanced Tautologies in Frege Systems Anahit A. Chubarya Yerevan State University e-mail: achubaryan@ysu.am Abstract Hard-determinable property and balanced property of tautologies are specified as important properties in the study of proof complexities formerly. In this paper hard- determinable and balanced properties are studied together. It is shown that some sequences of hard determinable balanced tautologies have polynomially bounded Frege proofs. Keywords: Hard-determinable tautologies, Balanced tautologies, Frege systems, Proof complexity characteristics. Article info: Received 29 June 2022; accepted 29 September 2022. 1. Introduction One of the most fundamental problems in proof complexity theory is to find an efficient proof system for classical propositional logic (CPL). There is a widespread understanding that polynomial time computability is the correct mathematical model of feasible computation. According to the opinion, a truly "effective" system should have a polynomial - size ๐‘(๐‘›) proof for every tautology of size ๐‘›. In [1] Cook and Reckhow named such a system a supersystem. They showed that ๐‘๐‘ƒ = ๐‘๐‘œ๐‘๐‘ƒ iff there exists a supersystem. It is well known that many systems are not super. This question about the Frege system, the most natural calculi for propositional logic, is still open. In many papers, some specific sets of tautologies are introduced, and it is shown that the question about polynomial bounded sizes for Frege proofs of all tautologies is reduced to an analogous question for a set of specific tautologies. In particular the hard-determinable tautologies and balanced tautologies are introduced in [2,3] as such sets of specific tautologies. In this paper, the hard-determinable and balanced properties are studied together and it is shown that some mailto:achubaryan@ysu.am Proof Complexity of Hard-Determinable Balanced Tautologies in Frege Systems 62 sequences of hard-determinable balanced tautologies have polynomial bounded Frege proofs. Using the notions and results of this paper and the results of [3-4] the above-mentioned statement of Cook and Reckhow can be rephrased as follows: ๐‘๐‘ƒ = ๐‘๐‘œ๐‘๐‘ƒ iff in some Frege system of CPL the proofs for all hard-determinable balanced formulas are polynomially bounded. 2. Preliminaries To prove our main result, we recall some notions and notation. We will use the current concepts of the unit Boolean cube (๐ธ๐‘›), a propositional formula, a tautology, a proof system for CPL, and proof complexity. The particular choice of a language for presenting propositional formulas is immaterial in this consideration. However, because of some technical reasons we assume that the language contains propositional variables, denoted by small Latin letters with indices. Logical connectives ยฌ, &, โˆจ, โŠƒ, and parentheses ( , ). Note that some parentheses can be omitted in generally accepted cases. 2.1. Hard-determinable and Balanced Tautologies Following the usual terminology we call the variables and negated variables literals. The conjunct ๐พ (clause) can be represented simply as a set of literals (no conjunct contains a variable and its negation simultaneously). In [3] the following notion is introduced. We call each of the following trivial identities for a propositional formula ฯˆ a replacement-rule: 0&ฯˆ = 0, ฯˆ&0 = 0, 1&ฯˆ = ฯˆ, ฯˆ&1 = ฯˆ, ฯˆ&ฯˆ = ฯˆ, ฯˆ&ยฌฯˆ = 0, ยฌฯˆ&ฯˆ = 0, 0โˆจ ฯˆ =ฯˆ, ฯˆโˆจ 0=ฯˆ, 1โˆจฯˆ =1, ฯˆโˆจ1 =1, ฯˆโˆจฯˆ = ฯˆ, ฯˆโˆจยฌ ฯˆ =1, ยฌฯˆโˆจฯˆ=1, 0โŠƒฯˆ=1, ฯˆโŠƒ0=ยฌฯˆ, 1โŠƒฯˆ =ฯˆ, ฯˆโŠƒ1=1, ฯˆโŠƒฯˆ =1, ฯˆโŠƒยฌฯˆ = ยฌฯˆ, ยฌฯˆโŠƒ ฯˆ = ฯˆ, ยฌ0 = 1, ยฌ1 = 0, ยฌยฌฯˆ = ฯˆ. Application of a replacement rule to certain word consists in replacing some its subwords, having the form of the left-hand side of one of the above identities by the corresponding right-hand side. Let ๐œ‘ be a propositional formula, let ๐‘ƒ = {๐‘1, ๐‘2, โ€ฆ , ๐‘๐‘›} be the set of the variables of ๐œ‘, and let ๐‘ƒโ€ฒ = {๐‘๐‘–1 , ๐‘๐‘–2 , โ€ฆ , ๐‘๐‘–๐‘š } (1 โ‰ค ๐‘š โ‰ค ๐‘›) be some subset of ๐‘ƒ. Definition 1: Given ๐œŽ = {๐œŽ1, ๐œŽ2, โ€ฆ , ๐œŽ๐‘š} โˆˆ ๐ธ ๐‘š, the conjunct ๐พ๐œŽ = {๐‘๐‘–1 ๐œŽ1 , ๐‘๐‘–2 ๐œŽ2 , โ€ฆ , ๐‘๐‘–๐‘š ๐œŽ๐‘š } is called ๐œ‘- determinative if assigning ๐œŽ1 (1 โ‰ค ๐‘— โ‰ค ๐‘š) to each ๐‘๐‘–๐‘— and successively using replacement rules we obtain the value of ๐œ‘ (0 or 1) independently of the values of the remaining variables. Definition 2: We call the minimal possible number of variables in a ๐œ‘-determinative conjunct the determinative size of ๐œ‘ and denote it by ds(๐œ‘). By | ๐œ‘| we denote the size of the formula ๐œ‘, defined as the number of all logical signs entries in it. It is obvious that the full size of the formula, which is understood to be the number of all symbols is bounded by some linear function in |๐œ‘ |. Definition 3: For sufficiently large ๐‘› the tautologies ๐œ‘๐‘› are called hard-determinable if there is some constant c such that ๐‘™๐‘œ๐‘”|๐œ‘๐‘›|๐‘‘๐‘ (๐œ‘๐‘›) โ†’ ๐‘ for ๐‘› โ†’ โˆž. Definition 4: A formula ๐œ‘ is balanced if every propositional variable occurring in ๐œ‘ occurs exactly twice, once positive and once negative. A. Chubaryan 63 Example 1. The tautologies ๐œ‘๐‘› = ๐‘1 โŠƒ (๐‘1 โŠƒ (๐‘2 โŠƒ (ยฌ๐‘2 โŠƒ (โ€ฆ โŠƒ (๐‘๐‘› โŠƒ ๐‘๐‘› ) โ€ฆ )))) are balanced. It is not difficult to see that ๐‘‘๐‘ (๐œ‘๐‘›) = 1, hence ๐œ‘๐‘› are not hard-determinable. Example 2. The tautologies ๐‘„๐ป๐‘„๐‘› = ๐‘‰0โ‰ค๐‘–โ‰ค๐‘› &1โ‰ค๐‘—โ‰ค๐‘› [๐‘‰1โ‰ค๐‘˜โ‰ค๐‘– ๏ฟฝฬ…๏ฟฝ๐‘–,๐‘—,๐‘˜ โˆจ ๐‘‰๐‘–<๐‘˜โ‰ค๐‘› ๐‘ž๐‘˜,๐‘—,๐‘–+1](๐‘› โ‰ฅ 1), are balanced. Put ๐‘„๐‘–,๐‘— = ๐‘‰1โ‰ค๐‘˜โ‰ค๐‘– ๏ฟฝฬ…๏ฟฝ๐‘–,๐‘—,๐‘˜ โˆจ ๐‘‰๐‘–<๐‘˜โ‰ค๐‘›๐‘ž๐‘˜,๐‘—,๐‘–+1(๐‘› โ‰ฅ 1, 0 โ‰ค ๐‘– โ‰ค ๐‘›, 1 โ‰ค ๐‘— โ‰ค ๐‘›), then ๐‘„๐ป๐‘„๐‘› = ๐‘‰0โ‰ค๐‘–โ‰ค๐‘›(๐‘„๐‘–1&๐‘„๐‘–2& โ€ฆ &๐‘„๐‘–๐‘— & โ€ฆ &๐‘„๐‘–(๐‘›โˆ’1)&๐‘„๐‘–๐‘›) and therefore ๐‘‘๐‘ (๐‘„๐ป๐‘„๐‘›). It is not difficult to see, that |๐‘„๐ป๐‘„๐‘›| = 3๐‘›2(๐‘›+1) 2 โˆ’ 1 |, hence ๐‘„๐ป๐‘„๐‘› are hard-determinable as well. 2.2. Proof Systems and Proof Complexities Let us recall some notions from [1]. A Frege system ๐“• uses a denumerable set of propositional variables, a finite, complete set of propositional connectives; ๐“• has a finite set of inference rules defined by a figure of the form ๐ด1๐ด2โ€ฆ ๐ด๐‘š ๐ต (the rules of inference with zero hypotheses are the schemes of axioms); ๐“• must be sound and complete, i.e. for each rule of inference ๐ด1๐ด2โ€ฆ ๐ด๐‘š ๐ต every truth-value assignment, satisfying ๐ด1๐ด2 โ€ฆ ๐ด๐‘š, also satisfies ๐ต, and ๐“• must prove every tautology. In the theory of proof complexity two main characteristics of the proof are: ๐‘™ โ€“ complexity to be the size of a proof (= the sum of all formulae sizes) and ๐‘ก โ€“ complexity to be its length (= the total number of lines). The minimal ๐‘™ โ€“ complexity (๐‘ก โ€“ complexity) of a formula ๐œ‘ in a proof system ฮฆ we denote by ๐‘™๐œ‘ ฮฆ(๐‘ก๐œ‘ ฮฆ). The polynomial equivalence (๐‘ โˆ’ ๐‘™ --equivalence, ๐‘ โˆ’ ๐‘ก --equivalence) of two proof systems by some proof complexity measure means that the transformation of any proof in one system into a proof in another system can be performed with no more than polynomial increase of proof complexity measure. It is well known that any two Frege systems are ๐‘ โˆ’ ๐‘™ -equivalent (๐‘ โˆ’ ๐‘ก -equivalent). Let ๐‘€ be some set of tautologies. Definition 5: We call the ะค-proofs of tautologies from the set ๐‘€ ๐‘ก -polynomially (๐‘™ โ€“ poly- nomially) bounded if there is a polynomial ๐‘() such that ๐‘ก๐œ‘ ๐›ท โ‰ค ๐‘(|๐œ‘|)(๐‘™๐œ‘ ๐›ท โ‰ค ๐‘(|๐œ‘|)) for all ๐œ‘ from ๐‘€. 2.3. Former Results It was previously proven that a) tautologies without hard-determinability condition have ๐‘ก -polynomially (๐‘™ - polynomially) bounded proofs in all systems of CPL [4], b) hard-determinability condition is sufficient (but not necessary) to obtain exponential lower bounds for both proof complexities of tautologies in โ€œweakโ€ proof systems of CPL (Cut- free sequent, Resolution, Cutting planes etc.) [4], c) hard-determinability condition is not sufficient for exponential lower bounds of proof complexities in Frege systems: for some examples of hard-determinable formulas the ๐‘ก - polynomially (๐‘™ - polynomially) bounded Frege-proofs are given in [2]. Some proof systems of CPL (calculus of structures with deep inference rules), where the author considers only formulas in negation normal form, are studied in [3], where among the rest of the results it is proved that Proof Complexity of Hard-Determinable Balanced Tautologies in Frege Systems 64 a) the set of above mentioned balanced formulas ๐‘„๐ป๐‘„๐‘› have polynomially bounded proofs in one of the studied system ๐‘ ๐พ๐‘†, b) the relations between the proof complexities in the system ๐‘ ๐พ๐‘† and the Frege systems are unknown for the present. 3. Main Result Let ๐น be some Frege system with inference rule modus ponens. Theorem1: The ๐น -proofs of tautologies ๐‘„๐ป๐‘„๐‘› (๐‘› โ‰ฅ 1) are ๐‘ก-polynomially (๐‘ก-polynomially) bounded. To prove, we use the method of [2] for description of some polynomially bounded proof of ๐‘„๐ป๐‘„๐‘› direct in ๐น by reducing it to ๐น -proofs of well-known tautologies ๐‘ƒ๐ป๐‘ƒ๐‘› = &0โ‰ค๐‘–โ‰ค๐‘›๐‘‰1โ‰ค๐‘—โ‰ค๐‘› ๐‘๐‘–๐‘— โŠƒ ๐‘‰0โ‰ค๐‘–<๐‘˜โ‰ค๐‘› ๐‘‰1โ‰ค๐‘—โ‰ค๐‘›(๐‘๐‘–๐‘— &๐‘๐‘˜๐‘— )(๐‘› โ‰ฅ 1) presenting the Pigeonhole Principle . It is proved in [5] that the set of these formulas is t- polynomially (๐‘™- polynomially) bounded. The following two auxiliary statements will be of use: Lemma 1: Given arbitrary formulas ๐›ผ, ๐›ฝ, ๐›พ, ๐›ผ๐‘–, ๐›ฝ๐‘–, ๐›ผ๐‘–๐‘— and ๐›ฝ๐‘–๐‘—, the ๐น-proofs of the following tautologies are ๐‘ก-polynomially (๐‘™-polynomially) bounded: 1) ฮฑ โˆจ ฮฑยฏ, 2) (ฮฑ โŠƒ ฮฒ) โŠƒ ((ฮฒ โŠƒ ฮณ) โŠƒ (ฮฑ โŠƒ ฮณ)), 3) (ฮฒยฏ โŠƒ ฮฑ) โŠƒ (ยฏฮฑ โŠƒ ฮฒ), 4) ฮฑ1 โŠƒ (ฮฑ2 โŠƒ (... โŠƒ (ฮฑk โŠƒ ฮฑ1 &ฮฑ2 &ยทยทยท&ฮฑk)...)) (k โ‰ฅ 2), 5) ฮฑ โˆจ ฮฑยฏ โŠƒ ฮฒ1 โˆจยทยทยทโˆจ ฮฒkโˆจฮฑ โˆจ ฮฒk+1 โˆจยทยทยท โˆจ ฮฒk+r โˆจ ฮฑยฏ โˆจ ฮฒk+r+1 โˆจยทยทยท โˆจ ฮฒk+r+t (k โ‰ฅ 1, r โ‰ฅ 1, t โ‰ฅ 1), 6) ยฌ(๐‘‰1โ‰ค๐‘–โ‰ค๐‘˜ &1โ‰ค๐‘—โ‰ค๐‘š๐›ผ๐‘–๐‘— ) โŠƒ &1โ‰ค๐‘–โ‰ค๐‘˜ ๐‘‰1โ‰ค๐‘—โ‰ค๐‘š๏ฟฝฬ…๏ฟฝ๐‘–๐‘— (๐‘˜ โ‰ฅ 1, ๐‘š โ‰ฅ 1) 7) &1โ‰ค๐‘–โ‰ค๐‘˜ (๐›ฝ1๐‘– โ‹๐›ฝ2๐‘– ) โŠƒ ยฌ(๐‘‰1โ‰ค๐‘–โ‰ค๐‘˜ (๏ฟฝฬ…๏ฟฝ1๐‘–&๏ฟฝฬ…๏ฟฝ2๐‘– )) (๐‘˜ โ‰ฅ 1). The proof is obvious. Lemma 2: Let ๐‘„๐‘–๐‘— and ๐‘„๐‘˜๐‘— (0 โ‰ค ๐‘–ห‚๐‘˜ โ‰ค ๐‘›, 1 โ‰ค ๐‘— โ‰ค ๐‘›) be the above denoted subformulas of ๐‘„๐ป๐‘„๐‘›, then ๐น-proofs of the formulas ๐‘„๐‘–๐‘— โˆจ ๐‘„๐‘˜๐‘— be ๐‘ก-polynomially (๐‘™-polynomially) bounded. The proof follows from the fact of existence of some ๐‘  and ๐‘š (1 โ‰ค ๐‘  โ‰ค ๐‘›, 1 โ‰ค ๐‘š โ‰ค ๐‘›) such that ๐‘„๐‘–๐‘— contains ๐‘ž๐‘ ๐‘—๐‘š and ๐‘„๐‘˜๐‘— contains ยฌ๐‘ž๐‘ ๐‘—๐‘š, and also from 1) and 5) of Lemma 1. From 6) of Lemma 1 we infer for the formula ๐‘„๐‘› = ๐‘‰0โ‰ค๐‘–โ‰ค๐‘› &1โ‰ค๐‘—โ‰ค๐‘› ๐‘„๐‘–๐‘— . Condition 1: The F-proofs of the formulas ยฌ๐‘„๐ป๐‘„๐‘› โŠƒ &0โ‰ค๐‘–โ‰ค๐‘›๐‘‰1โ‰ค๐‘—โ‰ค๐‘›ยฌ๐‘„๐‘–๐‘— are ๐‘ก-polynomially (๐‘™-polynomially) bounded. Put ๐‘ƒ๐ป๐‘ƒ๐‘› โ€™ = &0โ‰ค๐‘–โ‰ค๐‘› ๐‘‰1โ‰ค๐‘—โ‰ค๐‘›ยฌ๐‘„๐‘–๐‘— โŠƒ ๐‘‰0โ‰ค๐‘–<๐‘˜โ‰ค๐‘›๐‘‰1โ‰ค๐‘—โ‰ค๐‘›ยฌ(๐‘„๐‘–๐‘— &ยฌ๐‘„๐‘˜๐‘— ) (1) A. Chubaryan 65 The formulas (1) are obtained from the ๐‘ƒ๐ป๐‘ƒ๐‘› by the corresponding substitutions. Hence, Condition 2: The ๐น-proofs of the formulas (1) are ๐‘ก-polynomially (๐‘™-polynomially) bounded. Let ๐ด๐‘› = ๐‘‰0โ‰ค๐‘–<๐‘˜โ‰ค๐‘› ๐‘‰1โ‰ค๐‘—โ‰ค๐‘›(ยฌ๐‘„๐‘–๐‘— & ยฌ๐‘„๐‘˜๐‘—). Using conditions (1), (2), and item 2) of Lemma 1, we obtain Condition 3: The ๐น-proofs of the formulas ยฌ ๐‘„๐ป๐‘„๐‘› โŠƒ ๐ด๐‘› are ๐‘ก-polynomially (๐‘™-polynomially) bounded. From Lemma 2 and item 4) of Lemma 1 we have Condition 4: The F-proofs of the formulas ๐ต๐‘› = &0โ‰ค๐‘–<๐‘˜โ‰ค๐‘› &1โ‰ค๐‘—โ‰ค๐‘› (๐‘„๐‘–๐‘— โ‹๐‘„๐‘˜๐‘— ) are ๐‘ก-polynomially (๐‘™-polynomially) bounded, and from item 7) of Lemma 1 it follows that the ๐น- proofs of the formulas ยฌ๐ด๐‘›,๐‘š are ๐‘ก-polynomially (๐‘™-polynomially) bounded as well. From the conditions (3), (4), and item 3) of Lemma 1 we have a t-polynomial (l-polynomial) bound for the F-proofs of ๐‘„๐‘› . Corollary1: There are hard-determinable balanced formulas the F-proofs of which are t- polynomially (l-polynomially) bounded. 4. Conclusion Using the polynomial equivalence of different Frege systems [1], the above mentioned result of Cook and Reckhow can be rephrased as follows: ๐‘๐‘ƒ = ๐‘๐‘œ๐‘๐‘ƒ iff in some Frege system of CPL the proofs for all hard-determinable balanced formulas are polynomially bounded. References [1] S. A. Cook and A. R. Reckhow, โ€œThe relative efficiency of propositional proof systems,โ€ J. Symbolic Logic, vol. 44, pp. 36โ€“50, 1979. [2] S. R. Aleksanyan and A. A. Chubaryan, โ€œThe polynomial bounds of proof complexity in Frege systemsโ€, Siberian Mathematical Journal, Springer Verlag, vol. 50, no. 2, pp. 243- 249, 2009. [3] L. SraรŸburger, โ€œExtension without cutโ€, Annals of Pure and Applied Logic, vol.163, pp. 1995- 2007, 2012. [4] A. A. Chubaryan, โ€œRelative efficiency of a proof system in classical propositional logic,โ€ Izv. NAN Armenii Mat., vol. 37, no. 5, pp. 71โ€“84, 2002. [5] S. R. Buss, โ€œPolynomial size proofs of the propositional pigeonhole principle,โ€ Journal Symbolic Logic, vol. 52, pp. 916โ€“927, 1987. Proof Complexity of Hard-Determinable Balanced Tautologies in Frege Systems 66 ิดีชีพีกึ€-ีธึ€ีธีทีฅีฌีซ ีขีกีฌีกีถีฝีกีพีธึ€ีพีกีฎ ีถีธึ‚ีตีถีกีขีกีถีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีซ ีกึ€ีฟีกีฎีธึ‚ีดีถีฅึ€ีซ ีขีกึ€ีคีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีจ ี–ึ€ีฅีฃีฅีซ ีฐีกีดีกีฏีกึ€ีฃีฅึ€ีธึ‚ีด ิฑีถีกีฐีซีฟ ิฑ. ี‰ีธึ‚ีขีกึ€ีตีกีถ ิตึ€ึ‡ีกีถีซ ีบีฅีฟีกีฏีกีถ ีฐีกีดีกีฌีฝีกึ€ีกีถ e-mail: achubaryan@ysu.am ิฑีดึƒีธึƒีธึ‚ีด ี†ีกีญีฏีซีถีธึ‚ีด ีถีธึ‚ีตีถีกีขีกีถีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีซ ีคีชีพีกึ€-ีธึ€ีธีทีฅีฌีซีธึ‚ีฉีตีกีถ ีฐีกีฟีฏีธึ‚ีฉีตีธึ‚ีถีจ ึ‡ ีขีกีฌีกีถีฝีกีพีธึ€ีพีกีฎ ีฌีซีถีฅีฌีธึ‚ ีฐีกีฟีฏีธึ‚ีฉีตีธึ‚ีถีจ ีกีผีกีถีฑีถีกึีพีฅีฌ ีงีซีถ ีธึ€ีบีฅีฝ ีฏีกึ€ึ‡ีธึ€ ีฐีกีฟีฏีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ ีกึ€ีฟีกีฎีธึ‚ีดีถีฅึ€ีซ ีขีกึ€ีคีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีซ ีธึ‚ีฝีธึ‚ีดีถีกีฝีซึ€ีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีธึ‚ีด: ิฑีตีฝ ีฐีธีคีพีกีฎีธีด ีคีชีพีกึ€-ีธึ€ีธีทีฅีฌีซีธึ‚ีฉีตีกีถ ึ‡ ีขีกีฌีกีถีฝีกีพีธึ€ีพีกีฎ ีฌีซีถีฅีฌีธึ‚ ีฐีกีฟีฏีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีจ ีธึ‚ีฝีธึ‚ีดีถีกีฝีซึ€ีพีธึ‚ีด ีฅีถ ีฐีกีดีกีฟีฅีฒ: ิฑีบีกึีธึ‚ึีพีฅีฌ ีง, ีธึ€ ีคีชีพีกึ€-ีธึ€ีธีทีฅีฌีซ ีขีกีฌีกีถีฝีกีพีธึ€ีพีกีฎ ีถีธึ‚ีตีถีกีขีกีถีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีซ ีดีฅีฏ ีคีกีฝีซ ีฐีกีดีกึ€ ีกึ€ีฟีกีฎีธึ‚ีดีถีฅึ€ีจ ี–ึ€ีฅีฃีฅีซ ีฐีกีดีกีฏีกึ€ีฃีฅึ€ีธึ‚ีด ีขีกีฆีดีกีถีคีกีดีธึ€ีฅีถ ีฝีกีฐีดีกีถีกึƒีกีฏ ีฅีถ: ิฒีกีถีกีฌีซ ีขีกีผีฅึ€ี ีคีชีพีกึ€-ีธึ€ีธีทีฅีฌีซ ีถีธึ‚ีตีถีกีขีกีถีธึ‚ีฉีตีธึ‚ีถีถีฅึ€, ีขีกีฌีกีถีฝีกีพีธึ€ีพีกีฎ ีถีธึ‚ีตีถีกีขีกีถีธึ‚ีฉีตีธึ‚ีถีถีฅึ€, ี–ึ€ีฅีฃีฅีซ ีฐีกีดีกีฏีกึ€ีฃีฅึ€, ีกึ€ีฟีกีฎีดีกีถ ีขีกึ€ีคีธึ‚ีฉีตีธึ‚ีถีถีฅึ€ีซ ีขีถีธึ‚ีฉีกีฃึ€ีซีนีถีฅึ€: ะกะปะพะถะฝะพัั‚ะธ ะฒั‹ะฒะพะดะพะฒ ั‚ั€ัƒะดะฝะพ-ะพะฟั€ะตะดะตะปัะตะผั‹ั… ะฑะฐะปะฐะฝัะธั€ะพะฒะฐะฝะฝั‹ั… ั„ะพั€ะผัƒะป ะฒ ัะธัั‚ะตะผะฐั… ะคั€ะตะณะต ะะฐะฝะฐะธั‚ ะ. ะงัƒะฑะฐั€ัะฝ ะ•ั€ะตะฒะฐะฝัะบะธะน ะณะพััƒะดะฐั€ัั‚ะฒะตะฝะฝั‹ะน ัƒะฝะธะฒะตั€ัะธั‚ะตั‚ e-mail: achubaryan@ysu.am ะะฝะฝะพั‚ะฐั†ะธั ะ ะฐะฝะตะต ัะฒะพะนัั‚ะฒะพ ั‚ั€ัƒะดะฝะพ-ะพะฟั€ะตะดะตะปัะตะผะพัั‚ะธ ะธ ัะฒะพะนัั‚ะฒะพ ะฑะฐะปะฐะฝัะธั€ะพะฒะฐะฝะฝะพัั‚ะธ ั‚ะฐะฒั‚ะพะปะพะณะธะน ะฑั‹ะปะธ ะฒั‹ะดะปะตะฝั‹ ะบะฐะบ ะฒะฐะถะฝั‹ะต ัะฒะพะนัั‚ะฒะฐ ะฒ ะธััะปะตะดะพะฒะฐะฝะธัั… ัะปะพะถะฝะพัั‚ะตะน ะฒั‹ะฒะพะดะพะฒ. ะ’ ะฝะฐัั‚ะพัั‰ะตะน ัั‚ะฐั‚ัŒะต ัะฒะพะนัั‚ะฒะฐ ั‚ั€ัƒะดะฝะพ-ะพะฟั€ะตะดะตะปัะตะผะพัั‚ะธ ะธ ะฑะฐะปะฐะฝัะธั€ะพะฒะฐะฝะฝะพัั‚ะธ ะธะทัƒั‡ะฐัŽั‚ัั ัะพะฒะผะตัั‚ะฝะพ. ะ”ะพะบะฐะทะฐะฝะฐ ะฟะพะปะธะฝะพะผะธะฐะปัŒะฝะฐั ะพะณั€ะฐะฝะธั‡ะตะฝะฝะพัั‚ัŒ ะฒั‹ะฒะพะดะพะฒ ะฒ ัะธัั‚ะตะผะฐั… ะคั€ะตะณะต ะดะปั ะฝะตะบะพั‚ะพั€ะพะณะพ ะบะปะฐััะฐ ั‚ั€ัƒะดะฝะพ-ะพะฟั€ะตะดะตะปัะตะผั‹ั… ะฑะฐะปะฐะฝัะธั€ะพะฒะฐะฝะฝั‹ั… ั„ะพั€ะผัƒะป. ะšะปัŽั‡ะตะฒั‹ะต ัะปะพะฒะฐ: ั‚ั€ัƒะดะฝะพ-ะพะฟั€ะตะดะตะปัะตะผั‹ะต ั‚ะฐะฒั‚ะพะปะพะณะธะธ, ะฑะฐะปะฐะฝัะธั€ะพะฒะฐะฝะฝั‹ะต ั‚ะฐะฒั‚ะพะปะพะณะธะธ, ัะธัั‚ะตะผั‹ ะคั€ะตะณะต, ั…ะฐั€ะฐะบั‚ะตั€ะธัั‚ะธะบะธ ัะปะพะถะฝะพัั‚ะตะน ะฒั‹ะฒะพะดะพะฒ. mailto:achubaryan@ysu.am mailto:achubaryan@ysu.am References