2_Mossine-myu_18-25.DVI Mathematical Problems of Computer Science 49, 18{25, 2018. T wo Gener alized Lower B ounds for the Cir cumfer ence Mo s s in e S . K o u la kz ia n a n d Zh o r a G. N iko g h o s ya n Institute for Informatics and Automation Problems of NAS RA e-mail: mossine@hotmail.com, zhora@ipia.sci.am Abstract In 2013, the second author obtained two lower bounds for the length of a longest cycle C in a graph G in terms of the length of a longest path (a longest cycle) in G ¡C and the minimum degree of G (Zh.G. Nikoghosyan, "Advanced Lower Bounds for the Circumference", Graphs and Combinatorics 29, pp. 1531-1541, 2013). In this paper we present two analogous bounds based on the average of the ¯rst i smallest degrees in G ¡ C for appropriate i instead of the minimum degree. Keywords: Circumference, Minimum degree, Degree sums. 1 . In t r o d u c t io n L e t c b e t h e c ir c u m fe r e n c e - t h e le n g t h o f a lo n g e s t c yc le o f a g r a p h G a n d ± t h e m in im u m d e g r e e in G. In t h is p a p e r we p r e s e n t t h e fo llo win g t wo r e s u lt s . T heor em 1. L et C be a longest cycle in a graph G, p̂ the order of a longest path in G ¡ C and ¹ the average of the ¯rst p̂ smallest degrees in G ¡ C. Then c ¸ ( p̂ + 1 ) ( ¹ ¡ p̂ + 1 ) : T heor em 2. L et C be a longest cycle in a graph G, ĉ the order of a longest cycle in G ¡ C and ¹ the average of the ¯rst ĉ smallest degrees in G ¡ C. Then c ¸ ( ĉ + 1 ) ( ¹ ¡ ĉ + 1 ) : Ob s e r vin g t h a t ¹ ¸ ± in Th e o r e m s 1 a n d 2 , we o b t a in t h e o r ig in a l lo we r b o u n d s [2 ] a s im m e d ia t e c o r o lla r ie s in t e r m s o f p̂, ĉ a n d ±. T heor em A [2 ]. L et C be a longest cycle in a graph G and p̂ the order of a longest path in G ¡ C. Then c ¸ ( p̂ + 1 ) ( ± ¡ p̂ + 1 ) : T heor em B [2 ]. L et C be a longest cycle in a graph G and ĉ the order of a longest path in G ¡ C. Then c ¸ ( ĉ + 1 ) ( ± ¡ ĉ + 1 ) : 1 8 M. Koulakzian and Zh. Nikoghosyan 1 9 2 . D e ¯ n it io n s W e u s e B o n d y a n d Mu r t y [1 ] fo r t e r m in o lo g y a n d n o t a t io n n o t d e ¯ n e d h e r e , a n d c o n s id e r o n ly ¯ n it e u n d ir e c t e d g r a p h s wit h o u t lo o p s a n d m u lt ip le e d g e s . Th e ve r t e x s e t o f a g r a p h G is d e n o t e d b y V ( G) o r ju s t V ; t h e s e t o f e d g e s b y E ( G) o r ju s t E. Fo r a s u b g r a p h H o f G we a ls o u s e G ¡ H s h o r t fo r G ¡ V ( H ) , a n d jHj s h o r t fo r jV ( H ) j. P a t h s a n d c yc le s in G c a n b e c o n s id e r e d a s c o n n e c t e d s u b g r a p h s o f G, h a vin g a m a xim u m d e g r e e 0 ,1 o r 2 . Th e le n g t h o f a p a t h P a n d o f a c yc le Q, d e n o t e d b y l ( P ) a n d l ( Q ) , is jV ( P ) j ¡ 1 a n d jV ( Q ) j, r e s p e c t ive ly. W e d e n o t e l ( P ) = ¡ 1 a n d l ( Q ) = 0 if a n d o n ly if V ( P ) = V ( Q ) = ;. A g r a p h is s a id t o b e H a m ilt o n ia n if it s lo n g e s t c yc le p a s s e s t h r o u g h a ll o f it s ve r t ic e s . Th e ve r t ic e s a n d e d g e s in G c a n b e in t e r p r e t e d a s c yc le s o f le n g t h s 1 a n d 2 , r e s p e c t ive ly. A n ( x; y ) -p a t h is a p a t h wit h e n d ve r t ic e s x a n d y. Give n a n ( x; y ) -p a t h L o f G we d e n o t e b y ¡! L t h e p a t h L wit h a n o r ie n t a t io n fr o m x t o y. If u; v 2 V ( L) t h e n u¡!L v d e n o t e s t h e c o n s e c u t ive ve r t ic e s o n ¡! L fr o m u t o v in t h e d ir e c t io n s p e c ī e d b y ¡! L . Th e s a m e ve r t ic e s , in r e ve r s e o r d e r , a r e g ive n b y v á L u. Fo r L = x ¡! L y a n d u 2 V ( L) , le t u+ ( ¡!L ) ( o r ju s t u+ ) d e n o t e t h e s u c c e s s o r o f u ( u 6= y ) o n ¡!L a n d u¡ d e n o t e it s p r e d e c e s s o r ( u 6= x ) . If A µ V ( L) ¡ y a n d B µ V ( L) ¡ x, t h e n we d e n o t e A+ = fv+jv 2 Ag a n d B¡ = fv¡jv 2 Bg. A s im ila r n o t a t io n is u s e d fo r t h e c yc le s . If Q is a c yc le a n d u 2 V ( Q ) , t h e n u¡!Q u = u. Fo r v 2 V , p u t N ( v ) = fu 2 V juv 2 Eg, d( v ) = jN ( v ) j a n d ± = m in fd( u ) ju 2 V g. 3 . S p e c ia l D e ¯ n it io n s Fo r t h e r e m a in d e r o f t h is s e c t io n , le t a s u b g r a p h F o f a g r a p h G a n d a p a t h ( o r a c yc le ) ¡! M in G ¡ F b e ¯ xe d . De¯nition 1. ( ¤i) -m in im a lit y, ( ¤i) -m a xim a lit y. W e u s e t h e n o t io n s o f ( ¤i ) -m in im a lit y a n d ( ¤i ) -m a xim a liy d e ¯ n e d wit h r e s p e c t t o c e r t a in o p e r a t io n s fo r i = 1 ; 2 ; :::; 1 0 . Th e y will b e d e s c r ib e d in d e t a il c u r r e n t ly. De¯nition 2. MF -extension; ¡! T ( u) ; _u; Äu. Fo r e a c h u 2 V ( M ) , le t ¡!T ( u ) = u¡!T ( u ) Äu b e a p a t h in G, h a vin g o n ly u in c o m m o n wit h V ( M ) . If V ( T ( u) ) \ V ( T ( v ) ) = ; a n d V ( T ( u ) ) µ V ( G ¡ F ) fo r a ll d is t in c t ve r t ic e s u; v 2 V ( M ) , t h e n t h e fo r e s t T , d e ¯ n e d b y fT ( u ) ju 2 V ( M ) g, is s a id t o b e MF -e xt e n s io n . If Äu 6= u fo r s o m e u 2 V ( M ) , t h e n we u s e _u t o d e n o t e u+ ( ¡!T ( u) ) . De¯nition 3. ©u; '( u ) ; ª( u ) ; à ( u ) . L e t T b e a n M F -e xt e n s io n . Fo r e a c h u 2 V ( M ) , p u t ©u = N ( Äu) \ V ( T ) ; 'u = j©uj; ªu = N ( Äu ) \ V ( F ) ; Ãu = jªuj: De¯nition 4. U0; U 0; U1; U ¤. 2 0 Two Generalized Lower Bounds for the Circumference L e t T b e a n MF -e xt e n s io n . P u t U0 = fu 2 V ( M ) ju = Äug; U 0 = V ( M ) ¡ U0; U ¤ = fu 2 U 0j©u µ V ( T ( u ) ) g; U1 = V ( M ) ¡ ( U0 [ U¤ ) : De¯nition 5. M aximal M F -extension. A n MF -e xt e n s io n T is s a id t o b e m a xim a l if it is e xt r e m a l wit h r e s p e c t t o t h e fo llo win g o p e r a t io n : - if t h e r e e xis t s a n e d g e Äuz s u c h t h a t u 2 V ( M ) a n d z 62 V ( T ) [ V ( F ) , t h e n r e p la c in g T ( u ) b y uT ( u) Äuz, we o b t a in a n e w M F -e xt e n s io n T 0 wit h jV ( T 0 ) j > jV ( T ) j. De¯nition 6. ( U0 ) -minimal and ( U0; U ¤ ) -minimal M F -extensions. A n MF -e xt e n s io n T is s a id t o b e ( U0 ) -m in im a l, if it is c h o s e n s u c h t h a t U0 is ( ¤ 6 ) -m in im a l ( s e e t h e p r o o f o f Th e o r e m 1 ) . A ( U0 ) -m in im a l MF -e xt e n s io n T is s a id t o b e ( U0; U ¤ ) -m in im a l if it is c h o s e n s u c h t h a t U ¤ is ( ¤1 0 ) -m in im a l ( s e e t h e p r o o f o f Th e o r e m 2 ) . De¯nition 7. Bu; B ¤ u; bu; b ¤ u. L e t T b e a n MF -e xt e n s io n a n d u 2 V ( M ) . P u t Bu = fv 2 U0jv _u 2 Eg a n d bu = jBuj. B y t h e d e ¯ n it io n , Bu = ; fo r e a c h u 2 U0. Fu r t h e r m o r e , fo r e a c h u 2 U0 , le t B¤u = fv 2 U 0ju _v 2 Eg a n d jB¤uj = b¤u. 4 . P r e lim in a r ie s Th e p r o o fs o f t h e fo llo win g le m m a s c a n b e ¯ n d in [2 ]. Lemma 1. L et C be a cycle in a graph G and P a path in G¡C. L et ¡!P 0; :::; ¡! P p be pairwise disjoint paths in G ¡ C with ¡!P i = vi ¡! P iwi ( i = 0 ; 1 ; :::; p ) , having only v0; :::; vp in common with P . Then either there is a cycle in G longer than C or jCj ¸ pX i=0 jZij + ¯̄ ¯̄ ¯ p[ i=0 Zi ¯̄ ¯̄ ¯ ; where Zi = N ( wi ) \ V ( C ) ( i = 0 ; 1 ; :::; p ) . Lemma 2. L et F be a subgraph of a graph G and R a longest cycle in G ¡ F with a ( U0 ) - minimal RF -extension T . Then either there is a cycle longer than R or l ( R) ¸ 'u + bu + 1 for each u 2 U1. Lemma 3. L et F be a subgraph of a graph G and P a path in G¡F with a ( U0 ) -minimal P F - extension T . Then either there is a path longer than P or l ( P ) ¸ 'u+bu for each u 2 U1[U¤. M. Koulakzian and Zh. Nikoghosyan 2 1 5 . P r o o fs P r oof of T heor em 1. L et Q = u0:::uq be a path in G ¡ C with a ( U0 ) - minimal QC- extension T . Assume without loss of generality that C is ( ¤ 1 ¡ ¤ 4 ) -extremal, and Q is ( ¤ 7 ¡ ¤ 9 ) -extremal. Since G is non-Hamiltonian, we have q ¸ 0 . Claim 1. If u 2 U0 a n d v 2 U 0, t h e n ©u \ V ( T ( v ) ) µ fv; _vg. P r oof. S u p p o s e o t h e r wis e . L e t z 2 V ( T ( v ) ) ¡ fv; _vg. Th e n , r e p la c in g T ( u ) a n d T ( v ) b y uz ¡! T ( v ) Äv a n d v ¡! T ( v ) z¡, r e s p e c t ive ly, we c a n fo r m ( d e n o t e t h is o p e r a t io n b y ( ¤ 6 ) ) a n e w QC-e xt e n s io n , c o n t r a d ic t in g t h e ( U0 ) - m in im a lit y o f T . 2 Claim 2. If u 2 U0, t h e n 'u · q + b¤u. P r oof. Th e p r o o f fo llo ws im m e d ia t e ly fr o m D e ¯ n it io n s 3 , 7 a n d Cla im 1 . 2 Claim 3. If u 2 U 0, t h e n 'u · q ¡ bu. P r oof. U s in g L e m m a 3 wit h t h e fa c t t h a t Q is ( ¤ 7 ¡ ¤9 ) -e xt r e m a l, we o b t a in q ¸ 'u + bu fo r e a c h u 2 U 0, a n d t h e r e s u lt fo llo ws . 2 Ob s e r vin g t h a t X u2U0 b¤u = X u2U 0 bu ( b y t h e d e ¯ n it io n ) a n d u s in g Cla im s 2 a n d 3 , we o b t a in qX i=0 'ui · q ( q + 1 ) + X u2U0 b¤u ¡ X u2U 0 bu = q ( q + 1 ) : S u p p o s e ¯ r s t t h a t 'ui + Ãui 6= d( Äui ) fo r s o m e i 2 0 ; q. Th e n t h e r e e xis t s a n e d g e Äuz s u c h t h a t z 62 V ( T ) [ V ( C ) . A d d in g Äuz t o T we o b t a in a n e w QC-e xt e n s io n , c o n t r a d ic t in g t h e m a xim a lit y o f T ( D e ¯ n it io n 5 ) . N o w le t 'ui + Ãui = d( Äui ) ( i = 0 ; :::; q ) . Th e n qX i=0 Ãui = qX i=0 d( Äui ) ¡ qX i=0 'ui ¸ qX i=0 d( Äui ) ¡ q ( q + 1 ) : It fo llo ws , in p a r t ic u la r , t h a t m a x i fÃuig ¸ 1 q + 1 qX i=0 Ãui ¸ 1 q + 1 qX i=0 d ( Äui ) ¡ q: B y L e m m a 1 , c ¸ qX i=0 Ãui + m a x i fÃuig ¸ ( q + 2 ) à 1 q + 1 qX i=0 d( Äui ) ¡ q ! ¸ ( q + 2 ) ( ¹q ¡ q ) : P r oof of T heor em 2. L e t H = u1:::uku1 b e a c yc le in G ¡ C wit h a n ( U0; U ¤ ) -m in im a l HC-e xt e n s io n T . L e t H b e ( ¤5 ) -e xt r e m a l. P u t U¤1 = ( u 2 U¤j'u · h 2 ) ; U¤2 = ( u 2 U¤j'u ¸ h + 1 2 ) : 2 2 Two Generalized Lower Bounds for the Circumference Claim 1. If u 2 U0 a n d v 2 U 0, t h e n ©u \ V ( T ( v ) ) µ fv; _vg. P r oof. Th e p r o o f is ve r y s im ila r t o t h a t o f Cla im 1 in Th e o r e m 1 . 2 Claim 2. If u 2 U0, t h e n 'u · h ¡ 1 + b¤u. P r oof. Im m e d ia t e fr o m D e ¯ n it io n s 3 , 7 a n d Cla im 1 . 2 Claim 3. If u 2 U1, t h e n 'u · h ¡ 1 ¡ bu. P r oof. S in c e H is ( ¤ 5 ) -e xt r e m a l, b y L e m m a 2 , h ¸ 'u + bu + 1 fo r e a c h u 2 U1, a n d t h e r e s u lt fo llo ws . 2 Claim 4. If u 2 U¤, t h e n 'u · h ¡ 1 ¡ bu + 'u ¡ h2 . P r oof. S in c e H is ( ¤ 5 ) -e xt r e m a l, b y t h e s t a n d a r d a r g u m e n t s , h ¸ 2 ( bu + 1 ) fo r e a c h u 2 U¤, a n d t h e r e s u lt fo llo ws im m e d ia t e ly. 2 Claim 5. If u 2 U1, t h e n 'u · h ¡ 1 ¡ bu. P r oof. Im m e d ia t e fr o m Cla im s 3 a n d 4 . 2 If U¤2 = ;, t h e n b y Cla im s 2 a n d 5 , P u 'u · h( h ¡ 1 ) . B u t t h e n , a s in Th e o r e m 1 , c ¸ ( h + 1 ) ( ¸1 ¡ h + 1 ) , wh e r e ¸1 = 1h Pk i=1 d( Äui ) ¸ ¹h. N o w le t U¤2 6= ;. Ch o o s e v 2 U ¤2 s u c h t h a t 'v = m a x u2U¤ 2 f'ug: ( 1 ) Claim 6. If u 2 U¤2 , t h e n 'u · h ¡ 1 ¡ bu + 'v ¡ h2 . P r oof. Im m e d ia t e fr o m ( 1 ) a n d Cla im 4 . 2 U s in g Cla im s 2 , 5 , 6 a n d r e c a llin g t h a t P u2U0 b ¤ u = P u2U 0 bu a n d jU0j+jU1[U ¤ 1 j+jU¤2 j = h, we g e t X u 'u = X u2U0 'u + X u2U1[U ¤1 'u + X u2U ¤2 'u · h( h ¡ 1 ) + jU ¤2 j à 'v ¡ h 2 ! : ( 2 ) B y D e ¯ n it io n 3 , ©v µ V ( T ( v ) ) . L e t v1; :::; vt b e t h e e le m e n t s o f ©+v , o c c u r r in g o n ¡! T ( v ) in a c o n s e c u t ive o r d e r wit h vt = Äv. Cle a r ly t = j©vj = 'v. P u t N ( vi ) \ V ( T ) = ©0i; N ( vi ) \ V ( C ) = Z0i ( i = 1 ; :::; t) : ( 3 ) If ©0i \ ( V ( T ) ¡ V ( T ( v ) ) ) 6= ; fo r s o m e i 2 1 ; t, t h e n r e p la c in g T ( v ) b y v ¡! T ( v ) v¡i Äv á T ( v ) vi; we fo r m ( d e n o t e t h is o p e r a t io n b y ( ¤ 1 0 ) ) a n e w HC-e xt e n s io n , c o n t r a d ic t in g t h e m in im a lit y o f jU¤j. S o , we c a n a s s u m e ©0i µ V ( T ( v ) ) ( i = 1 ; :::; t) . A s s u m e w.l.o .g . t h a t m a xi j©0ij = j©0tj = 'v. S o , m a x i j©0ij = j©0tj = j©vj = 'v = t: ( 4 ) S in c e Ãui = d ( ui ) ¡ 'ui ( i = 1 ; :::; h) a n d jZ0ij = d ( vi ) ¡ j©0ij ( i = 1 ; :::; t ¡ 1 ) , we h a ve hX i=1 Ãui + t¡1X i=1 jZ0ij = hX i=1 ( d( ui ) ¡ 'ui ) + t¡1X i=1 ( d( vi ) ¡ j©0ij) M. Koulakzian and Zh. Nikoghosyan 2 3 = hX i=1 d( ui ) + t¡1X i=1 d( vi ) ¡ hX i=1 'ui ¡ t¡1X i=1 j©0ij: ( 5 ) P u t ¸2 = 1 h + t ¡ 1 à hX i=1 d( ui ) + t¡1X i=1 d ( vi ) ! ¸ ¸1 ¸ ¹h: Case 1. jU ¤2 j = 1 . B y ( 2 ) , ( 4 ) a n d ( 5 ) , hX i=1 Ãui + t¡1X i=1 jZ0ij ¸ ( h + t ¡ 1 ) ¸2 ¡ h ( h ¡ 1 ) ¡ t + h 2 ¡ t¡1X i=1 t = ( h + t ¡ 1 ) ¸2 ¡ h2 ¡ t2 + 3 h 2 : It fo llo ws , in p a r t ic u la r , t h a t m a x i fÃui ; jZ0ijg ¸ ¸2 ¡ h2 + t2 ¡ 3h 2 h + t ¡ 1 ¸ ¸2 ¡ 3 h 2 + 2 : If ¸2 · h ¡ 1 , t h e n c le a r ly c ¸ ( h + 1 ) ( ¸2 ¡ h + 1 ) . L e t ¸2 ¸ h ¸ t + 1 . A p p lyin g L e m m a 1 t o Q = Äv á T ( v ) v ¡! H v¡, we g e t c ¸ hX i=1 Ãui + t¡1X i=1 jZ0ij + m a x i fÃui ; jZ0ijg ¸ ( h + 1 ) ( ¸2 ¡ h + 1 ) + ( t ¡ 1 ) ( ¸2 ¡ t ¡ 1 ) ¸ ( h + 1 ) ( ¸2 ¡ h + 1 ) : Case 2. jU ¤2 j ¸ 2 . Ch o o s e w 2 U ¤2 ¡ v s u c h t h a t 'v ¸ 'w ¸ 'u fo r e a c h u 2 U ¤2 ¡ fv; wg. D e ¯ n e wi; Z00i ; ©00i ( i = 1 ; :::; r ) fo r T ( w ) in t h e s a m e wa y a s vi; Z 0 i a n d © 0 i we r e d e ¯ n e d fo r T ( v ) . A s in ( 4 ) , we c a n a s s u m e w.l.o .g . t h a t m a xi j©00i j = j©00rj = j©wj = 'w = r. Cle a r ly, t+r = 'v +'w ¸ h+ 1 . Th e n tX i=1 jZ0ij + rX i=1 jZ00i j = tX i=1 ( d( vi ) ¡ j©0ij) + rX i=1 ( d ( wi ) ¡ j©00i j ) = tX i=1 d ( vi ) + rX i=1 d( wi ) ¡ tX i=1 j©0ij ¡ rX i=1 j©00i j ¸ ( t + r ) ¸3 ¡ t2 ¡ r2; wh e r e ¸3 = 1 t + r à tX i=1 d( vi ) + rX i=1 d( wi ) ! ¸ ¹h: In p a r t ic u la r , m a x i fjZ0ij; jZ00i jg ¸ ¸3 ¡ t2 + r2 t + r : A p p lyin g L e m m a 1 t o Q = Äv á T ( v ) v ¡! H w ¡! T ( w ) Äw, we g e t c ¸ tX i=1 jZ0ij + rX i=1 jZ00i j + m a x i fjZ0ij; jZ00i jg ¸ ( t + r ) ¸3 ¡ t2 ¡ r2 + ¸3 ¡ t2 + r2 t + r 2 4 Two Generalized Lower Bounds for the Circumference ¸ ( h + 1 ) ( ¸3 ¡ h + 1 ) + ¸3 ( t + r ¡ h) + h2 ¡ 1 ¡ t2 ¡ r2 ¡ t2 + r2 t + r : If ¸3 · h ¡ 1 , t h e n c le a r ly, c ¸ ( h + 1 ) ( ¸3 ¡ h + 1 ) . Ot h e r wis e , c ¸ ( h + 1 ) ( ¸3 ¡ h + 1 ) + h( t + r ) ¡ 1 ¡ t2 ¡ r2 ¡ t2 + r2 t + r ¸ ( h + 1 ) ( ¸3 ¡ h + 1 ) + ( h ¡ 1 ) ( t + r ) ¡ t2 ¡ r2: Ob s e r vin g t h a t h ¡ 1 ¸ m a xft; rg ¸ t 2 + r2 t + r ; we o b t a in c ¸ ( h+1 ) ( ¸3¡h+1 ) . Th u s , c ¸ ( h+1 ) ( ¸¡h+1 ) , wh e r e ¸ = m in f¸1; ¸2; ¸3g ¸ ¹h. Refer ences [1 ] J.A . B o n d y a n d U .S .R . Mu r t y, Gr a p h Th e o r y wit h A p p lic a t io n s . Ma c m illa n , L o n d o n a n d E ls e vie r , N e w Y o r k, 1 9 7 6 . [2 ] Zh .G. N iko g h o s ya n , \ A d va n c e d lo we r b o u n d s fo r t h e c ir c u m fe r e n c e " , Gr a p h s a n d Co m - b in a t o r ic s 2 9 , p p . 1 5 3 1 -1 5 4 1 , 2 0 1 3 . Submitted 22.08.2017, accepted 24.12.2017. ¶ñ³ýÇ ³Ù»Ý³»ñϳñ óÇÏÉÇ »ñϳñáõÃÛ³Ý »ñÏáõ ÁݹѳÝñ³óí³Í ·Ý³Ñ³ï³Ï³ÝÝ»ñ Ø. øáõɳù½Û³Ý ¨ Ä. ÜÇÏáÕáëÛ³Ý ²Ù÷á÷áõÙ 2013-ÇÝ »ñÏñáñá¹ Ñ»ÕÇݳÏÁ G ·ñ³ýÇ ³Ù»Ý³»ñϳñ C óÇÏÉÇ »ñϳñáõÃÛ³Ý Ñ³Ù³ñ ëï³ó³í »ñÏáõ ëïáñÇÝ ·Ý³Ñ³ï³Ï³ÝÝ»ñ` ³ñï³Ñ³Ûïí³Í G ¡ C-Ç ³Ù»Ý³»ñϳñ ßÕóÛÇ »ñϳñáõÃÛ³Ý (³Ù»Ý³»ñϳñ óÇÏÉÇ »ñϳñáõÃÛ³Ý) ¨ G ·ñ³ýÇ Ýí³½³·áõÛÝ ³ëïÇ׳ÝÇ µÝáõó·ñÇãÝ»ñáí (Zh.G. Nikoghosyan, Advanced Lower Bounds for the Cir- cumference, Graphs and Combinatorics 29, pp. 1531-1541, 2013): Ü»ñϳ ³ß˳ï³ÝùáõÙ Ý»ñϳ۳óíáõÙ »Ý »ñÏáõ ѳٳÝÙ³Ý ·Ý³Ñ³ï³Ï³ÝÝ»ñ, áñï»Õ Ýí³½³·áõÛÝ ³ëïÇ׳ÝÇ µÝáõó·ñÇãÁ ÷á˳ñÇÝí³Í ¿ G¡C-Ç ·³·³ÃÝ»ñÇ ³é³çÇÝ i ³Ù»Ý³÷áùñ ³ëïÇ׳ÝÝ»ñÇ ÙÇçÇÝ Ãí³µ³Ý³Ï³Ýáí G ¡ C-áí å³Ûٳݳíáñí³Í áñáß i å³ñ³Ù»ïñÇ Ñ³Ù³ñ: M. Koulakzian and Zh. Nikoghosyan 2 5 Äâå îáîáùåííûå íèæíèå îöåíêè äëÿ äëèíû äëèííåéøåãî öèêëà ãðàôà Ì. Êóëàêçÿí è Æ. Íèêîãîñÿí Àííîòàöèÿ  2013 ãîäó âòîðîé àâòîð ïîëó÷èë äâå íèæíèå îöåíêè äëÿ äëèíû äëèííåéøåãî öèêëà ãðàôà G âûðàæåííûå ÷åðåç äëèíó äëèííåéøåé öåïè (äëèííåéøåãî öèêëà) ïîäãðàôà G ¡ C è ìèíèìàëüíóþ ñòåïåíü ãðàôà G (Zh.G. Nikoghosyan, Advanced Lower Bounds for the Circumference, Graphs and Combinatorics 29, pp. 1531-1541, 2013)?  íàñòîÿùåé ðàáîòå ïðåäñòàâëÿþòñÿ äâå îáîáùåííûå àíàëîãè÷íûå îöåíêè, ãäå âìåñòî ìèíèìàëüíîé ñòåïåíè ðàññìàòðèâàåòñÿ ñðåäíÿÿ àðèôìåòè÷åñêàÿ ñòåïåíåé ïåðâûõ i íàèìåíüøèõ ñòåïåíåé âåðøèí ïîäãðàôà G ¡ C äëÿ ïîäõîäÿùåãî ïàðàìåòðà i.