D:\User\...\main.DVI Mathematical Problems of Computer Science 49, 110{114, 2018. On M ultiple H ypotheses LAO T esting With Rejection of Decision for T wo Dependent Objects E vg u e n i H a r o u t u n ia n , A r a m Y e s a ya n a n d N a r in e H a r u t yu n ya n Institute for Informatics and Automation Problems of NAS RA e-mail: eghishe@sci.am, armfrance@yahoo.fr, narineharutyunyan57@gmail.com Abstract Multiple statistical hypotheses testing with possibility of rejecting of decision is considered for model consisting of two dependent objects characterized by joint discrete probability distribution. The matrix of error probabilities exponents (reliabilities) of asymptotically optimal tests is studied. Keywords: Multiple hypotheses testing, Optimal tests, Rejection option, Two object. 1 . In t r o d u c t io n Th is p a p e r is d e vo t e d t o t h e s t u d y o f c h a r a c t e r is t ic s o f lo g a r it h m ic a lly a s ym p t o t ic a lly o p t i- m a l ( L A O) h yp o t h e s e s t e s t in g wit h p o s s ib ilit y o f r e je c t io n o f d e c is io n fo r t h e m o d e l o f t wo d e p e n d e n t o b je c t s wit h jo in t p t o b a b ilit y d is t r ib u t io n s ( P D s ) . Th e c o r r e s p o n d e n c e p r e s e n t s a c o m p le m e n t t o p r o b le m s s t u d ie d in [1 , 2 ], wh e r e t h e c o m p o n e n t s o f r a n d o m ve c t o r c h a r a c - t e r iz in g t wo o b je c t s we r e in d e p e n d e n t , s o it wa s p o s s ib le t o c o n s id e r t h e t e s t p r o c e d u r e wit h s e p a r a t e t e s t s fo r t wo o b je c t s . In [2 ] t wo d i®e r e n t m o d e ls a r e s t u d ie d : ¯ r s t , wh e n r e je c t io n wa s a llo we d o n ly fo r o n e o f t h e o b je c t s a n d s e c o n d , wh e n r e je c t io n wa s a llo we d fo r b o t h o b je c t s . Th e p r o b le m wit h a n a lo g o u s s t a t e m e n t fo r o n e a r b it r a r ily va r yin g o b je c t wit h s id e in fo r m a t io n wa s e xa m in e d in [3 ]. It is wo r t h t o r e c a ll t h e p r e vio u s r e s u lt s o n L A O t e s t in g o f m a n y h yp o t h e s e s p u b lis h e d in [4 -6 ]. Me t h o d s a n d b a s ic r e s u lt s o f L A O t e s t in g a r e a ls o p r e s e n t e d in b o o ks [7 -9 ] 2 . P r o b le m Fo r m u la t io n a n d R e s u lt L e t P ( X ) b e a s p a c e o f a ll p r o b a b ilit y d is t r ib u t io n s G( x ) o n ¯ n it e s e t X . L e t ( X1; X2 ) b e r a n d o m ve c t o r t a kin g va lu e s in t h e s e t X £ X wit h o n e o f M 2; M ¸ 2 jo in t P D s Gm1;m2 2 P ( X £ X ) , m1; m2 = 1 ; M. L e t ( x1; x2 ) 4 = ( ( x11; x 2 1 ) ; :::; ( x 1 n; x 2 n ) ; :::; ( x 1 N ; x 2 N ) ) , x 1 n; x 2 n 2 X ; n = 1 ; N, b e a ve c t o r o f r e s u lt s o f N in d e p e n d e n t o b s e r va t io n s o f t h e ve c t o r ( X1; X2 ) , it is c a lle d a s a m p le . Th e s t a t is t ic ia n h a s t o d e t e r m in e u n kn o wn P D s fr o m t h e s e t o f h yp o t h e s e s : Hm1;m2 : G = Gm1;m2, m1; m2 = 1 ; M o r wit h d r a w t o d o a n y ju d g e m e n t u s in g o b t a in e d s a m p le . 1 1 0 E. Haroutunian, A. Yesayan and N. Harutyunyan 1 1 1 W e c a ll t h is p r o c e d u r e a c o m p o u n d t e s t a n d d e n o t e it b y ©N . Th e t e s t ©N c a n b e d e ¯ n e d b y t h e d ivis io n o f t h e s p a c e X N £ X N in t o M 2 + 1 d is jo in t s u b s e t s , wh e r e Am1;m2, m1; m2 = 1 ; M , c o n t a in s a ll ve c t o r s ( x1; x2 ) fo r wh ic h t h e h yp o t h e s is Hm1;m2 is a d o p t e d , a n d AM +1 c o n t a in s a ll ve c t o r s fo r wh ic h we r e fu s e t o t a ke a c e r t a in a n s we r . L e t ®l1;l2jm1;m2 ( ©N ) b e t h e p r o b a b ilit y o f t h e e r r o n e o u s a c c e p t a n c e o f t h e h yp o t h e s is Hl1;l2 b y t h e t e s t ©N p r o vid e d t h a t t h e h yp o t h e s is Hm1;m2 is t r u e , wh e r e ( m1; m2 ) 6= ( l1; l2 ) , m1; m2; l1; l2 = 1 ; M, ®l1;l2jm1;m2 ( ©N ) = G N m1;m2 ( Al1;l2 ) : W h e n t h e h yp o t h e s is Hm1;m2 is t r u e , b u t we d e c lin e t h e d e c is io n c o n c e r n in g t o t h e h yp o t h e s e s , t h e c o r r e s p o n d in g p r o b a b ilit y o f e r r o r is : ®M +1;M+1jm1;m2 ( ©N ) = G N m1;m2 ( AM +1 ) : Th e p r o b a b ilit y n o t t o a c c e p t a t r u e h yp o t h e s e s Hm1;m2, m1; m2 = 1 ; M is t h e fo llo win g : ®m1;m2jm1;m2 ( ©N ) = X (l1;l2) 6=(m1;m2); l1;l2=1;M ; (l1;l2)=(M+1;M+1) ®l1;l2jm1;m2 ( ©N ) : ( 1 ) W e s t u d y t h e c o r r e s p o n d in g r e lia b ilit ie s El1;l2jm1;m2 ( ©) o f t h e s e qu e n c e o f t e s t s ©, El1;l2jm1;m2 ( ©) 4 = lim N!1 ¡ 1 N lo g ®l1;l2jm1;m2 ( ©N ) ; m1; m2; l1; l2 = 1 ; M; ( l1; l2 ) = ( M + 1 ; M + 1 ) : ( 2 ) D e ¯ n it io n s ( 1 ) a n d ( 2 ) im p ly t h a t Em1;m2jm1;m2 ( ©) = m in (l1;l2) 6=(m1;m2) El1;l2jm1;m2 ( ©) ; m1; m2; l1; l2 = 1 ; M; ( l1; l2 ) = ( M + 1 ; M + 1 ) : ( 3 ) W e c a ll t h e t e s t s e qu e n c e ©¤ L A O fo r t h e m o d e l wit h t wo o b je c t s if fo r t h e g ive n p o s it ive va lu e s o f c e r t a in p a r t o f e le m e n t s o f t h e r e lia b ilit y m a t r ix E ( ©¤ ) t h e p r o c e d u r e ©¤ p r o vid e s m a xim a l va lu e s fo r a ll o t h e r e le m e n t s o f it . Fo r M = 2 t h e m a t r ix will b e a s fo llo ws : E ( ©) = 0 BBB@ E1;1j1;1 E1;2j1;1E2;1j1;1 E2;2j1;1 E3;3j1;1 E1;1j1;2 E1;2j1;2E2;1j1;2 E2;2j1;2 E3;3j1;2 E1;1j2;1 E1;2j2;1E2;1j2;1 E2;2j2;1 E3;3j2;1 E1;1j2;2 E1;2j2;2E2;1j2;2 E2;2j2;2 E3;3j2;2 1 CCCA : W it h t h e g ive n e le m e n t s E1;1j1;1; E1;2j1;2; E2;1j2;1; E2;2j2;2 we d e ¯ n e t h e r e g io n s o f a c c e p t a n c e o f t h e t e s t . In t h e g e n e r a l c a s e o f M h yp o t h e s e s fo r g ive n r e lia b ilit ie s E1;1j1;1; E1;2j1;2; E2;1j2;1; :::; EM;MjM;M we d e ¯ n e t h e fo llo win g r e g io n s : Rm1;m2 4 = fQ : D ( QjjGm1;m2 ) · Em1;m2jm1;m2g; m1; m2 = 1 ; M; ( 4 ) 1 1 2 On Multiple Hypotheses LAO Testing with Rejection of Decision for Two Dependent Objects RM+1;M +1 4 = fQ : D ( QjjGm1;m2 ) > Em1;m2jm1;m2 ; m1; m2 = 1 ; Mg; ( 5 ) E¤m1;m2jm1;m2 = E ¤ m1;m2jm1;m2 ( Em1;m2jm1;m2 ) 4 = 4 = Em1;m2jm1;m2; m1; m2 = 1 ; M; ( 6 ) E¤l1;l2jm1;m2 = E ¤ l1;l2jm1;m2 ( El1;l2jl1;l2 ) 4 = in f Q2R l1;l2 D ( QjjGm1;m2 ) ; l1; l2; m1; m2 = 1 ; M; ( m1; m2 ) 6= ( l1; l2 ) ( 7 ) E¤M +1;M+1jm1;m2 = E ¤ M+1;M+1jm1;m2 ( E1;1j1;1; E1;2j1;2; :::; EM;MjM;M ) 4 = in f Q2R M +1;M+1 D ( QjjGm1;m2 ) ; m1; m2 = 1 ; M: ( 8 ) L e t u s d e n o t e b y ( m1; m2 ) ¡ t h e s e t o f a ll p a ir in d ic e s in r o w o f ( m1; m2 ) va r yin g fr o m ( 1 ; 1 ) t ill p r e vio u s o f ( m1; m2 ) a n d b y ( m1; m2 ) + t h e s e t o f a ll p a ir in d ic e s in r o w o f ( m1; m2 ) va r yin g fr o m n e xt o f ( m1; m2 ) t ill ( M; M ) . T heor em: If all distributions Gm1;m2 = fGm1;m2 ( x1; x2 ) ; x1; x2 2 X g, m1; m2 = 1 ; M , are di®erent in the sense that D ( Gl1;l2jjGm1;m2 ) > 0 , and the positive numbers E1;1j1;1; E2;2j2;2; :::; EM;MjM;M are such that the following inequalities hold E1;1j1;1 < m in l1;l2=1;M ; (l1;l2) 6=(1;1) D ( Gl1;l2jjG1;1 ) ; ( 9 ) Em1;m2jm1;m2 < m in [ m in (l1;l2)2(m1;m2)¡ E¤l1;l2jm1;m2 ( El1;l2jl1;l2 ) ; m in (l1;l2)2(m1;m2)+ D ( Gl1;l2jjGm1;m2 ) ]; m1; m2 = 1 ; M; ( m1; m2 ) 6= ( 1 ; 1 ) ; ( m1; m2 ) 6= ( M; M ) ; ( 1 0 ) EM;MjM;M < m in l1;l2=1;M ; (l1;l2) 6=(M;M ) E¤l1;l2jM;M ( El1;l2jl1;l2 ) ; ( 1 1 ) then there exists a LAO sequence of tests, all elements of the reliability matrix of which E ¤ = fE¤l1;l2jm1;m2g are positive and are de¯ned in ( 6 ) ¡ ( 8 ) . W hen one of the inequalities ( 9 ) ¡ ( 1 1 ) is violated, then at least one element of the matrix ( 6 ) ¡ ( 8 ) is equal to 0 . Th e p r o o f o f t h e t h e o r e m c o n s is t s in p r e s e n t a t io n o f t h e p r o b le m fo r t wo o b je c t s a s a p r o b - le m fo r o n e c a p a c io u s o b je c t . If we r e n u m e r a t e a s fo llo ws ( 1 ; 1 ) = 1 ; ( 1 ; 2 ) = 2 ; :::; ( 1 ; M ) = M; ( 2 ; 1 ) = M + 1 ; :::; ( 2 ; M ) = 2 M; :::; ( M; M ) = M 2 a n d d e n o t e ( X1; X2 ) = Y , X £ X = Y we will h a ve p r o b le m o f M 2 h yp o t h e s e s t e s t in g fo r o n e o b je c t wit h p o s s ib ilit y o f d e c is io n r e je c t io n . S o u s in g t h is n u m e r a t io n we will h a ve t h e c o r r e s p o n d in g e r r o r p r o b a b ilit ie s a n d r e lia b ilit ie s fo r l = 1 ; M 2 + 1 ; ; m = 1 ; M 2, wh e n we a p p ly Th e o r e m 2 o f [3 ]. Ge n e r a liz a t io n o f t h e r e s u lt is p o s s ib le in m a n y d ir e c t io n s . E. Haroutunian, A. Yesayan and N. Harutyunyan 1 1 3 Refer ences [1 ] E . A . H a r o u t u n ia n , P . M. H a ko b ya n a n d A . O. Y e s s a ya n , \ On m u lt ip le h yp o t h e s e s L A O t e s t in g wit h r e je c t io n o f d e c is io n fo r m a n y in d e p e n d e n t o b je c t s " , P roceedings of International Conference CSIT 2011, p p . 1 1 7 { 1 2 0 , Y e r e va n 2 0 1 1 . [2 ] E . H a r o u t u n ia n , P . H a ko b ya n , A . Y e s s a ya n a n d N . H a r u t yu n ya n \ On Mu lt ip le H yp o t h e - s e s L A O Te s t in g W it h L ib e r t y o f R e je c t io n o f D e c is io n fo r Two In d e p e n d e n t Ob je c t s " ,... [3 ] E . H a r o u t u n ia n , P . H a ko b ya n a n d A . Y e s s a ya n , \ Ma n y h yp o t h e s e s L A O t e s t in g wit h r e je c t io n o f d e c is io n fo r a r b it r a r ily va r yin g o b je c t " , Transactions of IIAP of NAS of R A and of YSU, M athematical P roblems of Computer Science, vo l. 3 5 , p p . 7 7 -8 5 , 2 0 1 1 . [4 ] E . A . H a r o u t u n ia n , \ Ma n y s t a t is t ic a l h yp o t h e s e s : in t e r d e p e n d e n c e o f o p t im a l t e s t 's e r r o r p r o b a b ilit ie s e xp o n e n t s " , ( In R u s s ia n ) , A b s t r a c t o f t h e r e p o r t o n t h e 3 r d A ll- U n io n s c h o o l-s e m in a r , \P rogram-algorithmical software for applied multi-variate statis- tical analysis", Ts a kh ka d z o r , P a r t 2 , p p . 1 7 7 { 1 7 8 , 1 9 8 8 . [5 ] E . A . H a r o u t u n ia n , \ L o g a r it h m ic a lly a s ym p t o t ic a lly o p t im a l t e s t in g o f m u lt ip le s t a t is t i- c a l h yp o t h e s e s " , P roblems of Control and Information Theory, vo l. 1 9 ( 5 -6 ) , p p . 4 1 3 { 4 2 1 , 1 9 9 0 . [6 ] E . H a r o u t u n ia n a n d P . H a ko b ya n , \ Mu lt ip le h yp o t h e s e s L A O t e s t in g fo r m a n y in d e - p e n d e n t o b je c t " , In t e r n a t io n a l Jo u r n a l \ S c h o la r ly R e s e a r c h E xc h a n g e " , vo l. 2 0 0 9 , p p . 1 -6 , 2 0 0 9 . [7 ] I. Cs is z ¶a r a n d J. K Äo r n e r , Information theory: coding theorems for discrete memoryless systems, S e c o n d E d it io n , Ca m b r id g e U n ive r s it y P r e s s , 2 0 1 1 . [8 ] R . E . B la h u t , P rinciples and P ractice of Information Theory, A d d is o n -W e s le y, R e a d in g , MA , 1 9 8 7 . [9 ] T. M. Co ve r a n d J. A . Th o m a s , E lements of Information Theory. S e c o n d E d it io n , N e w Y o r k, W ile y, 2 0 0 6 . Submitted 10.10.2017, accepted 15.02.2018. ´³½Ù³ÏÇ í³ñϳÍÝ»ñÇ áñáßáõÙÇó Ññ³Å³ñٳٵ Ȳú ëïáõ·Ù³Ý Ù³ëÇÝ »ñÏáõ ϳËÛ³É ûµÛ»ÏïÝ»ñÇ ¹»åùáõÙ º. гñáõÃÛáõÝÛ³Ý, ². ºë³Û³Ý ¨ Ü. гñáõÃÛáõÝÛ³Ý ²Ù÷á÷áõ٠гٳï»Õ Áݹѳï ѳí³Ý³Ï³Ý³ÛÇÝ µ³ßËٳٵ µÝáõó·ñíáÕ »ñÏáõ ϳËÛ³É ûµÛ»ÏïÝ»ñÇ Ýϳïٳٵ ¹Çï³ñÏíáõÙ ¿ µ³½Ù³ÏÇ í³ñϳÍÝ»ñÇ áñáßáõÙÇó Ññ³Å³ñÙ³Ý Ñݳñ³íáñáõÃÛ³Ùµ ëïáõ·áõÙÁ: àõëáõÙݳëÇñí»É ¿ ë˳ÉÇ Ñ³í³Ý³Ï³ÝáõÃÛáõÝÝ»ñÇ ³ëÇÙåïáïáñ»Ý ûåïÇÙ³É óáõóÇãÝ»ñÇ (Ñáõë³ÉÇáõÃÛáõÝÝ»ñÇ) Ù³ïñÇóÁ: 1 1 4 On Multiple Hypotheses LAO Testing with Rejection of Decision for Two Dependent Objects Î LAO òåñòèðîâàíèè ìíîãèx ãèïîòåç ñ îòêàçîì îò ðåøåíèÿ äëÿ äâóõ çàâèñèìûõ îáúåêòîâ Å. Àðóòþíÿí, À. Åñàÿí è Í. Àðóòþíÿí Àííîòàöèÿ Äëÿ ìîäåëè ñîñòîÿùeé èç äâóõ çàâèñèìûõ îáúåêòîâ, xàðàêòåðèçóåìûx ñîâ- ìåñòíûì äèñêðåòíûì ðàñïðåäåëåíèåì âåðîÿòíîñòåé ðàññìàòðèâàåòñÿ òåñòèðî- âàíèå ìíîãèx ñòàòèñòè÷åñêèõ ãèïîòåç ñ âîçìîæíîñòüþ îòêàçà îò ðåøåíèÿ. Èçó÷åíà ìàòðèöà àñèìïòîòè÷åñêè îïòèìàëüíûõ ýêñïîíåíò âåðîÿòíîñòåé îøèáîê (íàäåæíîñòåé).