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Abstract
The replication crisis in psychology has led to an increased concern regarding the false discovery rate (FDR) –
the proportion of false positive findings among all significant findings. In this article, we compare two previously
proposed solutions for decreasing the FDR: increasing statistical power and decreasing significance level α. First,
we provide an intuitive explanation for α, power, and FDR to improve the understanding of these concepts. Second,
we investigate the relationship between α and power. We show that for decreasing FDR, reducing α is more efficient
than increasing power. We suggest that researchers interested in reducing the FDR should decrease α rather than
increase power. By investigating the relative importance of both α level and power, we connect the literature on
these topics and our results have implications for increasing the reproducibility of psychological science.
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The reproducibility of studies in psychology has been
questioned in the last few years. Massive replication
initiatives found that replicability can be as low as 36%
(Open Science Collaboration, 2015; but see Camerer
et al., 2018; Ebersole et al., 2016; Klein et al., 2014;
Klein et al., 2018 for more optimistic estimates), and
many researchers have tried to identify the factors af-
fecting the replicability of studies. While a comprehen-
sive overview of this is beyond the scope of a single
article (a whole issue of Perspectives on Psychological
Science was dedicated to the problem; Pashler and Wa-
genmakers, 2012), we focus on statistical power, signifi-
cance level α and the false discovery rate (FDR, the pro-
portion of false positive findings among all statistically
significant findings).1 While some papers emphasize the

importance of increasing statistical power to decrease
the FDR (Button et al., 2013; Christley, 2010), others
call for decreasing α (Benjamin et al., 2018). How-
ever, these two views seem disconnected and it is un-
clear whether (or under which conditions) researchers
should decide to decrease α and when to increase power
in order to reduce the FDR. To further explore this dis-
connect, we reviewed all articles mentioning FDR (or
related terms) in the context of power and α in five
methods and evidence synthesis journals within psy-
chology (for more details see: https://osf.io/9cfg8/).
Out of 106 reviewed articles, nine explicitly stated the

1The FDR is sometimes also called False Positive Rate (FPR
Benjamin et al., 2018) or False Positive Risk (FPR Colquhoun,
2017).
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importance of increasing power to reduce the FDR,
while five articles discussed the importance of decreas-
ing α.2 Notably, only Miller and Ulrich (2019) discussed
that both decreasing α and increasing power would re-
duce FDR. However, the efficiency of those two options
was not compared so far.

The current article aims to bridge the discussion over
α and power regarding the FDR and investigate the
more efficient way of reducing the FDR. To achieve this,
we first reiterate the concepts of power, false positives,
and false discovery rate. We explain them using intu-
itive examples to deepen the understanding of these
concepts. Next, we examine two possible views and
their impact on reducing the FDR. The first view con-
cerns planning a study and deciding on α and power
independently. The second view concerns balancing be-
tween α and power for a fixed design, where setting α
determines power and vice versa.

False Positives and α

In his pivotal book “Statistical Methods for the Re-
search Worker” Fisher (1925) was the first to widely
popularize the concept of hypothesis testing and statis-
tical significance to differentiate signal from noise. Ney-
man and Pearson (1928) introduced the conceptualiza-
tion of the significance level α as a tool to control the
long-term error rates. In other words, a decision from a
statistical test with a significance level (i.e., 5%) would
not result in more than a rate α of incorrectly rejected
true null hypotheses. Thus, α determines the long-term
rate of false positives. If researchers set their α to 5%,
they will accept the alternative hypothesis when the
probability of the data or more extreme data assuming
the null hypothesis to be true (the p-value) is below α.

Let us illustrate this concept with an example from
Fisher (1935) famous experiment “The Lady tasting
tea”. Lady Muriel Bristol claims that she can detect
whether tea or milk was added first to a cup. To test
whether the Lady has these tea tasting abilities, Fisher
gives lady Bristol eight cups of tea, in which four of
them has milk added first, while the other four have
tea added first. Fisher wants to keep his long-term error
rate of false positives below 5%. Since the Lady knows
that half of the cups are tea first, Fisher focuses only on
the number of correctly classified tea-first-cups (because
the correctly classified milk-first-cups are dependent on
the correctly classified tea-first-cups). How many of the
four tea-first-cup cases would the Lady need to classify
correctly to convince Fisher of her abilities? The proba-
bility of correctly guessing x tea-first-cups in four trials
can be obtained using the hypergeometric distribution
(Figure 1, left). All four tea-first-cups would be guessed
correctly with a probability of 1.43%. So, this event

would indicate that it is improbable to see the Lady give
all eight correct answers if she has no tea tasting abil-
ities and guessed entirely at random. But what if she
makes one mistake? The probability of classifying at
least three out of four tea-first-cups correctly by pure
guessing is 24.3%. In other words, this would not pro-
vide sufficient evidence against her lack of abilities. So,
in this case, Fisher would be unable to know whether
she can differentiate between the cups. Even if she were
guessing entirely at random, she could have achieved at
least three out of four correctly guessed tea-first-cups
24.3% of the time.

Power

Neyman and Pearson (1928) introduced the concept
of statistical power because of the fundamental asym-
metry of controlling Type I error rates without explic-
itly formalizing Type II error control (the probability
of concluding the absence of an effect, when it exists;
Lehmann, 1992). Statistical power describes the prob-
ability that a statistical test rejects the null hypothesis
when it is false. In other words, power refers to the
probability of rejecting the null hypothesis, assuming
that the hypothesized effect is present. The statistical
power of a test depends on α, the sample size, and the
magnitude of the true effect. A higher α, a larger sample
size, and a larger true effect all contribute to increased
statistical power (Cohen, 1992). Power is thus related
to false negatives, with higher statistical power decreas-
ing the probability of finding a false negative result.

Let’s continue with the previous example but look at
it from the other side. Assume that the Lady can distin-
guish whether the milk or tea was added first. It is a dif-
ficult task, and she makes a mistake from time to time.
Her probability of classifying the cup correctly is 0.7.
The resulting probabilities this time follow a noncentral
hypergeometric distribution (Liao and Rosen, 2001; Fig-
ure 1, right). Thus, the probability of her classifying all
eight cups correctly is now 19%. In other words, if the
Lady has the ability to classify correctly in 70% of cases,
Fisher would only detect this 19% of the time.

False Discovery Rate

It follows from the previously outlined definition that
power does not influence the probability of observing a
false-positive result for any single study. However, since
negative results are rarely published (Masicampo and
Lalande, 2012; Mathur and VanderWeele, 2020; Nel-
son et al., 1986; Rosenthal, 1979; Rosenthal and Gaito,
1963, 1964; Wicherts, 2017 but see van Aert et al., 2019

2Most of the remaining articles focused on correction for
multiple testing.
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Figure 1. The hypergeometric distribution shows the probability of x successes (x-axis) with the probability of
success 0.50 (left) and 0.70 (right). Note that we only display up to four successes. We can think of those bars as
the number of tea-first-cups classified correctly. The Lady knows how many (but not which) cups have tea added
to them first. Therefore, if she classifies all tea-first-cups correctly, she necessarily also classifies the milk-first-cups
correctly. The dark-filled bars correspond to the probability of 4 correct answers.

for contrary evidence), it is more interesting to investi-
gate the proportion of false positives among significant
findings, i.e., the false discovery rate (FDR). This pro-
portion depends on the number of true positives (be-
lieving that someone possesses the tea tasting abilities
when they truly do) and the number of false positives
(believing that someone possesses the tea tasting abili-
ties when they do not). While the number of true posi-
tives depends on power and the number of true alterna-
tive hypotheses, the number of false positives depends
on α and the proportion of false hypotheses. So, the
FDR connects both previously mentioned concepts, and
we illustrate it with our running example.

Her Majesty The Queen decides to start a Royal Tea
Tasting Society (RTTS) and requests Fisher to recruit
new members based on their tea tasting abilities. As-
sume that one-fifth of the population possesses such
abilities and can identify the order of milk and tea in
70% of cases. The remaining four-fifths do not possess
this skill and their answers are equal to random guess-
ing. Fisher decides to use α of 5%; therefore, 0.05×0.80
= 4% of the tests he administers result in false posi-
tives. Because he conveniently uses the same set-up as
in the previous example, we know that the power of
the test is 19%. Therefore, 0.19×0.20 = 3.8% of the
tests he administers yield true positives. Subsequently,
he introduces all citizens who passed the test to the
Queen, who promotes them to members of the RTTS.
However, what the Queen does not realize is the fact
that 0.04/(0.04+0.038) = 51% of her RTTS members

do not possess any tea tasting abilities (the FDR).
As can be deduced from the example, there are two

ways to decrease FDR - either increase power and thus
the number of true positives, or reduce α and the num-
ber of false positives. This relationship is depicted in
Equation (1), which illustrates how power and α influ-
ence the FDR, with P(H0) standing for the proportion of
true null hypotheses, α for significance level, and ρ for
statistical power,

FDR =
P(H0) × α

P(H0) × α + (1 − P(H0)) × ρ
. (1)

This is the reason why many argue that researchers
need to increase the statistical power to reduce the
FDR. However, we show in the following paragraphs
that reducing α is usually the preferable option by in-
vestigating two ways of considering the trade-off be-
tween power and α. In the first way, researchers plan
a study and independently determine what levels of α
and power should be used. In the second, researchers
balance between α and power for a fixed design, where
setting α determines the power and vice versa.

Determining α and Power Independently

The first view assumes that α and power are set inde-
pendently.3 For example, researchers plan a study with

3The first case and the following derivations were sug-
gested by Stephen R. Martin in his review (https://osf.io/
7kdjn/).

https://osf.io/7kdjn/
https://osf.io/7kdjn/
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Figure 2. The logarithm of the FDR gradient (z-axis) is
dependent on α (Alpha, x-axis) and power (y-axis) for
the probability of the null hypothesis being true equal
to 0.5. The red surface (with blue lines) depicts the
gradient of FDR with respect to α and the green surface
(with red lines) depicts the gradient of FDR in respect
to power. Note that they intersect when α is equal to
power. When α is lower than power (right side), the
gradient of FDR with respect to α dominates the gradi-
ent with respect to power. An animated version is ac-
cessible at https://osf.io/gbtku/.

desired α and power and compute the required sample
size for achieving them. Subsequently, we can study
how either changing α or power in the planning phase
influences the FDR. To do that, we present derivations
of Equation (1) with respect to α,

δFDR
δα

=
ρ × (1 − P(H0)) × P(H0)

(α × P(H0) + ρ × (1 − P(H0)))2 , (2)

and power,

δFDR
δρ

=
−α × (1 − P(H0)) × P(H0)

(α × P(H0) + ρ × (1 − P(H0)))2 , (3)

Equations (2) and (3) connect the change in α or
power to change in FDR. Since the denominators are
the same and P(H0) is bound to be between 0 and 1,
the comparison of Equation (2) and (3) shows that the
gradient of FDR with respect to power will dominate
the gradient of FDR with respect to α as long as power
is larger than α (Figure 2).

This is generally true because α is the lower bound on
power, unless a one-sided test is used and the effect is in
the opposite direction. Then, power is lower than α and
the gradient of FDR with respect to α dominates the gra-
dient of FDR with respect to power. In addition, when a

two-sided test is used but the power is low, many signif-
icant results will be in the opposite direction (Type S er-
ror; Gelman and Carlin, 2014). Including those into the
FDR would further change the results. Compelling vi-
sualizations that support this claim are also available in
the online materials (https://osf.io/gbtku/) and a more
detailed discussion of this approach can be found in the
open review (https://osf.io/sp95d/). Overall, this indi-
cates that for all conditions that are typically encoun-
tered in hypothesis testing, the gradient with respect to
alpha will dominate the gradient with respect to power.

In other words, when designing a study, planning a
lower α has a larger effect than planning higher power,
as long as power is kept higher than α. So, if Fisher
wanted to mitigate the proportion of members of RTTS
with no tea tasting abilities before the experiment was
conducted, the best solution would be to decrease the α
as much as possible.

Trading α and Power

The second view goes one step further. If we assume
that researchers are operating with limited resources
(i.e., a limited number of participants or time), then α
determines power or vice versa. In other words, for a
fixed design, researchers can either set α and power can
be expressed as a function of α, or researchers can set
a desired power, and α can be expressed as a function
of power. Equation (4) shows the relationship of power
(ρ), on the left side, to α, in the case of a two-tailed
independent samples z-test. In addition, sample size n
and effect size d are needed to determine the parameter
µ of the normal distribution of expected z-statistics un-
der the alternative hypothesis. The significance level α
determines the upper and lower cut-off value used for
significance testing through a quantile function of the
standard normal distribution Φ−1. The cut-off is subse-
quently used in the cumulative probability density func-
tion of the normal distribution Φµ with mean µ and stan-
dard deviation equal to 1, determine the probability of
obtaining more extreme z-values than those equal to α,

ρ = 1 − Φµ(Φ−1(1 − α/2)) + Φµ(Φ−1(α/2)). (4)

The µ parameter of the cumulative density function of
the normal distribution for a two-sample independent z-
test is dependent only on the effect size d and the num-
ber of participants n split equally into the groups (Equa-
tion (5)). More participants or larger effect size means
that the distribution of z-statistics has a higher mean µ,

µ = d
√

n
2
. (5)

Equations (4) and (5) are also depicted for a concrete
example with n = 100, d = 0.5 and α = .05 (Figure 3).

https://osf.io/gbtku/
https://osf.io/gbtku/
https://osf.io/sp95d/


5

−6 −4 −2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

z−statistics

D
en

si
ty

 Φ−1(1 −
α

2
) Φ−1(

α

2
)

1 −  Φ µ( Φ−1(1 −
α

2
)) Φ µ( Φ−1(

α

2
))

Figure 3. Equations (4) and (5) correspond to this visualzation when assuming n = 100, d = 0.5 and α = .05.
The vertical lines correspond to the cut-off z-statistic computed using a quantile function of the normal distribution
under the null hypothesis (dashed line). The full line corresponds to the expected distribution of z-statistics under
the alternative hypothesis with the grey-filled area corresponding to the power computed using a cumulative density
function.

If α is decreased, the vertical lines placed at the cut-
off z-statistic determined by the quantile function of the
normal distribution move further apart from the center
and thus reduce the grey-filled area corresponding to
the power. On the other hand, one could also increase
α and thus increase the area corresponding to power.

So, given constant sample size and effect size, re-
searchers are faced with two possibilities: they can ei-
ther (a) increase α, reducing the cut-off and thus achiev-
ing higher power; or (b) decrease α and subsequently
lower the power. We know that there is a convention to
set α in statistical tests to 5%. However, there is no rea-
son why α should remain constant at this fixed value.
Fisher (1956) explained that the 5% should be disre-
garded whenever there are other substantial reasons to
determine α. More recently, scientists again called for a
more flexible adaption of α (Lakens et al., 2018).

In other words, in psychological science that oper-
ates with limited resources, there is always a trade-off
that needs to be made between avoiding false positives
and detecting true positives. If Fisher wants to mitigate
the proportion of members of RTTS with no tea tasting
abilities (assuming he has a constrained budget), he is
faced with two options. On the one hand, he can de-
crease α and lower the number of false positives with
the cost of decreased power and fewer true positives.
On the other hand, he can also increase the power and
increase the number of true positives at the cost of in-
creasing α leading to more false positives. The impor-
tant question is, which is more efficient in lowering the

FDR: lowering α or increasing power? We show that for
a two-sided z-test and for one-sided z-test with true ef-
fect in the predicted direction given a constant sample
size, decreasing α leads to lower FDR than increasing
statistical power. Figure 4 shows this relationship on
an example with an independent samples z-tests for the
proportion of true null hypothesis P(H0) = 0.5, effect
size d = 0.5 and sample size n = 100 (50 per group).

Similar results can be obtained for different sam-
ple sizes, effect sizes, proportions of null hypotheses
being true and statistical tests (code to generate 3D
plots across different µs can be found at https://osf.io/
uszxk/). There is always a decrease in FDR with de-
creasing α but for two exceptions. First, if the null hy-
potheses are either all false or all true (which would
include effect size equal to 0), then the proportion is 1
or 0 respectively, independent of power and α. Second,
for one-sided tests where the true effect is opposite to
the expected direction, the FDR will increase with re-
ducing α. However, these two situations should be rel-
atively rare in practice; therefore, reducing α is usually
the most efficient way to decrease the FDR.

For a more formal analysis we also calculated the
gradient of the FDR with regards to α (see Supplemen-
tary Materials at https://osf.io/svu7r). This elaborates
the conclusion that α is more efficient in reducing the
FDR, since the derivative is positive for all values of α
apart from one-sided tests with an effect in the oppo-
site direction. 3D plots showing the derivative for dif-
ferent noncentrality parameters (ncps) can be found at

https://osf.io/uszxk/
https://osf.io/uszxk/
https://osf.io/svu7r
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Figure 4. Trading off between power and α with P(H0) = 0.5, d = 0.5 and n = 100 (50 per group) results in the
displayed FDR. The double x-axis shows α with its corresponding power, scaled according to α in the left chart and
according to power in the right chart. To plot the relationship for other statistical tests, see https://osf.io/uwkqz/.
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corresponding power, scaled according to α in the left chart and according to power in the right chart.

https://osf.io/uszxk/. Figure 5 shows the gradient an
independent samples z-tests for the proportion of true
null hypothesis P(H0) = 0.5, effect size d = 0.5 and
sample size n = 100 (50 per group).

An expected objection is that instead of the trade-off
by increasing α, one can achieve an increase in power
by increasing sample size. As explained before, there is
no apparent reason for keeping α constant with increas-
ing sample size. Instead, one can keep the power fixed
and use the higher sample size to decrease α. Figure 6
shows that keeping the power constant and decrease α
by increasing the sample size is more efficient in lower-
ing the FDR.

Again, a similar pattern can be observed irrespective
of the starting sample size, α, power, effect size, and
proportion of true null hypotheses. The decrease in FDR
is stronger when using the increase in sample size to

reduce α rather than increase the power.

Discussion

Our analysis shows that reducing α is usually more
effective in reducing the false discovery rate than in-
creasing power. Researchers striving to reduce the false
discovery rate should reduce their α instead of increas-
ing power. This is not only true when planning a
study and deciding on the levels of α and power, but
also when balancing power and α at a constant sam-
ple size or when increasing sample size and consider-
ing whether to “spend” the additional participants on
increasing power or reducing α.

Our conclusion is similar to the long-standing liter-
ature on α adjustments for controlling the false discov-
ery rate in multiple testing (e.g., Benjamini & Hochberg,

https://osf.io/uwkqz/
https://osf.io/uszxk/
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1995). However, its main goal is to keep the false dis-
covery rate for a set of tests below a certain threshold
rather than trading α and power in respect to the FDR.

We also need to consider several limitations of our
analyses. In case of one-sided tests, reducing α is only
more beneficial if the true effect is in the expected di-
rection. In case of two-sided tests, incorporating type S
errors into the definition of FDR increases the effective-
ness of power if it is close to α. However, both of these
scenarios are not plausible under common conditions.
In addition, for balancing α and power, we only present
results for the two-sample z-test and assuming that the
assumptions of the statistical test (e.g., homoskedasticy
and normal distribution) are fulfilled. While the rela-
tion between power and α and FDR for a variety of
other tests can be found at https://osf.io/uwkqz/ and
is in line with our analysis, a formal proof that the pro-
posed relationship is holding for all tests under differ-
ent conditions is not presented in this paper. More re-
search is needed to generalize our results to more kinds
of tests and settings. We also only analyze the effect
of α and power, while an additional issue causing non-
replicability can be a low prior probability of the tested
hypotheses (Benjamin et al., 2018; Hoogeveen et al.,
2020; Ioannidis, 2005), which plays a direct role in the
FDR formula.

In addition, we want to emphasize that we are still
advocates of high power for several reasons.4 First, high
power is crucial for avoiding Type II errors. Controlling
Type I errors is often perceived as more important than
controlling Type II errors (e.g., Cohen, 1956); however,
in some contexts, Type II errors might be more prob-
lematic (Fiedler et al., 2012). For example, consider re-

searchers first investigating a new, potentially ground-
breaking treatment for depression. Here, the Type II er-
ror of not detecting the effectiveness of the treatment
might be more costly than concluding that the treat-
ment is effective when it is not. This error (and conse-
quently abandoning this line of research) would mean
missing an opportunity to improve the lives of people
with depression. Another example might be replication
studies, where the primary focus is to test whether a
previously reported effect is there, with a lesser concern
of inflating FDR. Here, high power is crucial to avoid
such Type II errors. In addition, low power and con-
ditioning on significance leads to an overestimation of
effect sizes (Type M error) and to effect size estimates in
the wrong direction (Type S error; Gelman and Carlin,
2014). For these reasons, high powered studies are cru-
cial for cumulative science. Therefore, we recommend
that in practice, researchers think about their inferen-
tial goals, weighing the costs of both Type I and Type
II errors, to determine an optimal α and power (Lakens
et al., 2018; Maier & Lakens, 2022; Miller & Ulrich,
2019; Mudge et al., 2012). If an important goal is to
reduce the FDR, our analyses show that reducing α is
more effective than increasing power.

Last but not least, we want to point out that the ac-
tual α level is often higher than the nominal α level
due to questionable research practices, such as optional
stopping or failure to report all dependent variables
(John et al., 2012; Simmons et al., 2011; Wicherts,
2017). Therefore, finding ways to prevent these prac-
tices using tools such as preregistration (Nosek et al.,
2018) and registered reports (Chambers et al., 2015)
is probably one of the most critical tasks psychological
science is facing. Some researchers also argue that we
should abandon the framework of statistical testing and
instead focus solely on summarizing the full information
about effect size estimates (McShane et al., 2019).

Conclusion

We strove for two objectives in this paper. Firstly, we
reiterated over α, power, and false discovery rate, hope-
fully improving the understanding of these concepts.
Secondly, we compared two previously proposed solu-
tions to decreasing the false discovery rate. Our results
show that with respect to the false discovery rate, it is
usually more effective to decrease α than to increase
statistical power. We suggest that researchers interested
in reducing the false discovery rate focus on reducing α.

4And we do not fear that our article will lead to a decrease
in power since six decades of articles calling for an increase
in statistical power had no visible impact (Smaldino & McEl-
reath, 2016).

https://osf.io/uwkqz/
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