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Collinearity isn’t a disease that needs curing

Jan Vanhove
University of Fribourg

Abstract

Once they have learnt about the effects of collinearity on the output of multiple regression models, researchers may
unduly worry about these and resort to (sometimes dubious) modelling techniques to mitigate them. I argue that,
to the extent that problems occur in the presence of collinearity, they are not caused by it but rather by common
mental shortcuts that researchers take when interpreting statistical models and that can also lead them astray in
the absence of collinearity. Moreover, I illustrate that common strategies for dealing with collinearity only sidestep
the perceived problem by biasing parameter estimates, reformulating the model in such a way that it maps onto
different research questions, or both. I conclude that collinearity in itself is not a problem and that researchers
should be aware of what their approaches for addressing it actually achieve.
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As researchers and students learn more about statisti-
cal models, they sooner or later stumble across the term
(multi)collinearity. Collinearity, which roughly means
that the predictors in a statistical model are correlated
with each other, is often cast as a problem for statis-
tical analysis. This suggests that the conscientious an-
alyst has to solve it. I will argue that, to the extent
that problems occur in the presence of collinearity, these
are not caused by the collinearity itself but rather by a
faulty way of thinking about statistical models that can
lead analysts astray even in the absence of collinear-
ity. Common strategies for dealing with collinear predic-
tors do not solve these perceived problems but instead
sidestep them, often by fitting a model that, perhaps
unbeknownst to the analyst, answers a different set of
questions from the original one.

This article does not present any novel insights, but
I hope that it will nonetheless be educational to read-
ers who sometimes find the output of regression mod-
els befuddling. I will focus on collinearity between two
continuous predictors in (ordinary least squares) mul-
tiple regression models. In this case the strength of
the collinearity can be gauged from the correlation be-
tween the predictors. However, all of my points apply

to models with categorical predictors or a mix of cat-
egorical and continuous predictors as well. I will not
discuss methods for assessing the degree of collinearity
between three or more predictors for the simple reason
that I find them a distraction: in what follows, I will
argue that collinearity is not a statistical problem and
should not be checked for (also see O’Brien, 2007).

Collinearity and its consequences

Collinearity means that a substantial amount of in-
formation contained in some of the predictors included
in a statistical model can be pieced together as a lin-
ear combination of some of the other predictors in the
model. The easiest case is when you have a multiple
linear regression model with two correlated predictors,
as in the examples to follow. These predictors can be
continuous or categorical, but I will stick to continuous
predictors for ease of exposition.

I created four datasets with two continuous predic-
tors to illustrate collinearity and its consequences. You
can find the R code to reproduce all analyses at https:
//osf.io/jupd8/. The outcome in each dataset was cre-
ated using the following equation; the parameter values
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were chosen arbitrarily:

outcome; = 0.4 X predictorl; + 1.9 X predictor2; + ¢;,

€3]
where the residuals (g;) were drawn from a normal dis-
tribution with a standard deviation of 3.5.!

The four datasets are presented in Figures 1 through
4. In Figure 1, a linear function of predictorl captures
most of the information contained in predictor2, so
the two predictors are strongly collinear. In Figure 3,
by contrast, both predictors are completely unrelated,
and a linear function of one predictor cannot capture
any information in the other. Hence, the two predic-
tors are not collinear at all. Some readers may be sur-
prised to see that I consider a situation where two pre-
dictors are correlated at r = 0.50 (Figure 2) to be a
case of weak rather than moderate or strong collinear-
ity. But in fact, the consequences of having two pre-
dictors that are correlated at r = 0.50 (rather than at
r = 0.00) are negligible. Finally, Figure 4 highlights
the linear part in collinearity: while the two predictors
in this figure are related in that predictor2 perfectly
determines predictorl, there is no linear relationship
between them whatsoever. (You cannot uniquely de-
termine the value for predictor2 when you know the
value for predictorl, though.) The dataset in Figure
4 is not affected by any of the statistical consequences
of collinearity, but it will be useful to illustrate a point I
want to make below.

To illustrate the statistical consequences of collinear-
ity, I simulated 10,000 samples of 50 observations in
which the two predictors were highly correlated (sam-
ple correlation of r = 0.98, yielding datasets similar to
the one in Figure 1) and 10,000 samples of 50 observa-
tions in which they were completely orthogonal (sam-
ple r = 0.00, yielding datasets similar to the one in
Figure 3). In all cases, both predictors were indepen-
dently related to the outcome according to Equation 1.
On each simulated sample, I ran a multiple regression
model from which I extracted the estimated model co-
efficients. Figure 5 shows the estimated coefficients for
the first predictor, whose true parameter value is 0.4.
Clearly, the estimates vary more when the predictors
are strongly correlated than when they are not, such
that individual estimates can lie farther from the true
parameter value and often have the opposite sign from
this true parameter value. However, on average, the
estimates equal the true parameter value. In statistics
parlance, they are “unbiased.”

Crucially, and happily, this greater variability is re-
flected in the standard errors and confidence intervals
around these estimates: The standard errors and con-
fidence intervals are automatically wider when the es-
timated coefficients are affected by collinearity. This is
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Figure 1. A dataset with strongly collinear predictors (r
= 0.98).

illustrated in Figure 6: If you fit multiple regressions on
the datasets plotted in Figures 1 to 4, the confidence
intervals are considerably wider if the predictors are
strongly collinear than when they are not. Moreover,
the confidence intervals retain their nominal coverage
rates (i.e., x% of the x% confidence intervals contain the
true parameter value). So the statistical consequence of
collinearity is automatically taken care of in the model’s
output and requires no additional computations on the
part of the analyst.

The greater variability in the estimates, and the ap-
propriately larger standard errors and wider confidence
intervals all reflect a relative lack of information in the
sample (also see Morrissey and Ruxton, 2018). It is dif-
ficult to improve on York’s (2012) explanation of the
problem and possible solutions:

“Collinearity is at base a problem about in-
formation. If two factors are highly corre-
lated, researchers do not have ready access

!Some researchers examining the consequences of
collinearity generate both the predictors and the outcome di-
rectly from multivariate normal distributions in which the cor-
relation between the predictors varies but the correlations be-
tween the outcome and the individual predictors do not (e.g.,
Wurm and Fisicaro, 2014) rather than generating the outcome
as a function of the predictors as I did. In doing so, they im-
plicitly allow the true regression equation to vary from sim-
ulation to simulation: If you fix the correlations between the
predictors and the outcome, but you want to vary the inter-
correlation between the predictors, you have to vary the g8
parameters (fixed at 0.4 and 1.9 in my example) and the o
parameter (fixed at 3.5 in my example). The result of this is
that such simulations may paradoxically show that you obtain
more significant estimates when the predictors are strongly
collinear (see Wurm and Fisicaro, 2014, Table 6), but they
actually compare different data generating processes.
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Figure 2. A dataset with weakly collinear predictors (r
= 0.50).
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Figure 3. A dataset with completely unrelated predictors
(r = 0.00).
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Figure 4. A dataset with orthogonal (» = 0.00) but per-
fectly related predictors: Once you know the value of
predictor2, you know the value of predictorl.

to much information about conditions of the
dependent variables when only one of the
factors actually varies and the other does
not. If we are faced with this problem, there
are really only three fundamental solutions:
(1) find or create (e.g. via an experimen-
tal design) circumstances where there is re-
duced collinearity; (2) get more data (i.e. in-
crease the N size), so that there is a greater
quantity of information about rare instances
where there is some divergence between the
collinear variables; or (3) add a variable or
variables to the model, with some degree of
independence from the other independent
variables, that explain(s) more of the vari-
ance of Y, so that there is more informa-
tion about that which is being modeled.”
(p. 1384)

Is collinearity a problem?

For the most part, I think that collinearity is a prob-
lem for statistical analyses in the same way that Bel-
gium’s lack of mountains is detrimental to the country’s
chances of hosting the Winter Olympics: It is an un-
fortunate fact of life, but not something that has to be
solved. The three solutions that York (2012) mentions,
i.e., running another study, obtaining more data or re-
ducing the error variance using covariates, are all sensi-
ble, but if you have to work with the data that you have,
the model output will be unbiased and will appropri-
ately reflect the degree of uncertainty in the estimates.

So I do not consider collinearity a problem. What is
the case, however, is that collinearity highlights prob-
lems with the way many people think about statistical
models and inferential statistics. Let’s look at a couple
of these.

“Collinearity decreases statistical power.”

You may have heard that collinearity decreases sta-
tistical power, i.e., the chances of obtaining a statisti-
cally significant coefficient estimate if the true param-
eter value is different from zero. This is true, but the
lower statistical power is a direct result of the larger
standard errors, which appropriately reflect the greater
sampling variability of the estimates. This is only a
problem if you interpret “lack of statistical significance”
as “zero effect.” But then the problem does not lie
with collinearity but with the belief that non-significant
estimates indicate zero effects. (Schmidt (1996) calls
this false belief “the most devastating of all to the re-
search enterprise” (p. 126).) It is just that this false
belief is even more likely than usual to lead you astray
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When the predictors are strongly collinear, the estimates vary more from sample to sample, but the estimates are
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Figure 6. Estimated coefficients and their 95% confidence intervals for the models fitted to the four datasets. The

dashed vertical lines show the true parameter values.

when your predictors are collinear. If instead of focus-
ing solely on the p-value, you take into account both
the estimate and its uncertainty interval, then there is
no problem.

Incidentally, I think that some people may be misled
when they hear that collinearity “decreases” statistical
power or “increases” standard errors as this wording
may be taken to suggest that collinearity is a process
that can be halted or reversed. It is true that compared
to situations in which there is less or no collinearity and
all other things are equal, the standard errors are larger
and statistical power is lower when there is stronger
collinearity. But outside of computer simulations, you
cannot reduce collinearity while keeping all other things
equal. In the real world, collinearity is not an unfolding
process that can be nipped in the bud without bringing
about other changes in the research design, the sam-
pling procedure, or the statistical model and its inter-
pretation.

Similarly, you may have heard that collinearity “in-
flates” standard errors or p-values. This wording, too,

is misleading as it suggests that, in the presence of
collinearity, standard errors and p-values are larger than
they should have been. They are not, as per the discus-
sion in the previous section (see Morrissey and Ruxton,
2018).

“None of the predictors is significant but the overall
model fit is.”

With collinear predictors, you may end up with a sta-
tistical model for which the F-test of the overall model
fit is highly significant but that does not contain a single
significant predictor. This is illustrated in Table 1. The
overall model fit for the dataset with strong collinear-
ity (see Figure 1) is highly significant, but as shown in
Figure 6, neither predictor has an estimated coefficient
that is significantly different from zero: Both 95% con-
fidence intervals contain zero.

If this seems strange, you need to keep in mind that
the tests for the individual coefficient estimates and the
test for the overall model fit seek to answer different



Table 1

F-tests and p-values for the overall model fit for the multiple regression models on the four datasets. Even though neither
predictor has a significant estimated coefficient in the ‘strong collinearity’ dataset (as shown in Figure 6), the overall fit

is highly significant.

Dataset F-test p-value
strong collinearity F(3,47) = 8.0 0.001
weak collinearity F(3,47) = 6.6 0.003
no collinearity (unrelated predictors) F(3,47) = 5.9 0.005
no collinearity (related predictors) F(3,47) =9.8 0.000

questions, so there is no contradiction if they yield dif-
ferent answers. To elaborate, the test for the overall
model fit asks if all predictors jointly can account for
variance in the outcome; the tests for the individual
coefficients ask whether these are different from zero.
With collinear predictors, it is possible that the answer
to the first question is “yes” and the answer to the sec-
ond is “I have no idea.” The reason for this is that
with collinear predictors, either predictor could act as
the stand-in of the other so that, as far as the model is
concerned, either coefficient could well be zero, as long
as the other is not. But due to the lack of information
in the collinear sample, it is not sure which, if any, is
zero (see McElreath, 2020, Chapter 6, for a lucid expla-
nation).

So again, there is no real problem: The tests answer
different questions, so they may yield different answers.
It is just that when you have collinear predictors, this
tends to happen more often than when you do not.

“Collinearity means that you can’t take model coef-
ficients at face value.”

It is sometimes said that collinearity makes it more
difficult to interpret estimated model coefficients. But
the appropriate interpretation of an estimated regres-
sion coefficient is always the same, regardless of the
degree of collinearity: According to the model, what
would the difference in the mean outcome be if you
took two large groups of observations that differed by
one unit in the focal predictor but whose other predic-
tor values were the same. The emphasised clause is cru-
cial, and note the absence of any appeal to causality in
the previous sentence. The interpretational difficulties
that become obvious when there is collinearity are not
caused by the collinearity itself but by mental shortcuts
that people take when interpreting regression models.

For instance, you may obtain a coefficient estimate
in a multiple regression model with collinear predictors
that you interpret to mean that older children perform
more poorly on a foreign-language (L.2) writing task
than younger children. This would be counterintuitive,
and you may find that, in your sample, older children

actually outperform younger ones. You could chalk this
one up to collinearity, but the problem really is related
to a faulty mental shortcut you took when interpreting
your model: You forgot to take into account the crucial
“but whose other predictor values are the same” clause.
If your model also includes measures of the children’s
previous exposure to the L2, their motivation to learn
the L2, and their L2 vocabulary knowledge, then what
the estimated coefficient means is emphatically not that,
according to the model, older children perform on av-
erage more poorly on a writing task than younger chil-
dren. What it means is that, according to the model,
older children perform more poorly than younger chil-
dren with the same values on the previous exposure, mo-
tivation, and vocabulary knowledge measures. If, on re-
flection, this is not what you are actually interested in,
then you should fit a different model (also see Miller
and Chapman, 2001, for a similar point in the context
of analysis of covariance). For instance, if you are in-
terested in the overall difference between younger and
older children regardless of their previous exposure,
motivation and vocabulary knowledge, do not include
these variables as predictors. But then you should have
also not included these predictors if the collinearity had
not been as strong.

Another interpretational difficulty emerges if you re-
cast the interpretation of the estimate as follows: Ac-
cording to the model, what would the expected differ-
ence in mean outcome be if you took an observation and
increased its value on the focal predictor by one unit but
kept the other predictor values constant? The difference
between this interpretation and the one that I offered
earlier is that we have moved from a purely descriptive
one to both a causal and an interventionist one (viz., the
idea that one could change some predictor values while
keeping the others constant and that this would have an
effect on the outcome). In the face of strong collinear-
ity, it becomes clear that this interventionist interpreta-
tion may be wishful thinking: It may be impossible to
change values in one predictor without also changing
values in the predictors that are collinear with it. But
the problem here again is not the collinearity but the
mental shortcut in the interpretation. Statistical models



6

describe associations; imbuing them with a causal or
even interventionist interpretation requires strong ad-
ditional assumptions (for guidance, see Elwert, 2013;
Rohrer, 2018; Shmueli, 2010).

In fact, you can run into the same difficulties when
you apply the interventionist mental shortcut in the ab-
sence of collinearity: In the dataset shown in Figure 4,
it is impossible to change the second predictor without
also changing the first since the first is a transformation
of the second. Yet the two variables are not collinear,
since the transformation is completely nonlinear. Or say
you want to model quality ratings of texts in terms of
the number of words in the text (“tokens”), the number
of unique words in the text (“types”), and the type/to-
ken ratio. The model will output estimated coefficients
for the three predictors, but as an analyst you should
realise that it is impossible to find two texts differing in
the number of tokens but having both the same number
of types and the same type/token ratio: If you change
the number of tokens and keep constant the number of
types, the type/token ratio changes, too.

A final mental shortcut that is laid bare in the pres-
ence of collinearity is conflating a measured variable
with the theoretical construct that this variable is as-
sumed to capture. Conflating measurements and con-
structs can completely invalidate the conclusions drawn
from a model even in the absence of collinearity (see
Berthele and Vanhove, 2020; Brunner and Austin, 2009;
Loftus, 1978; Wagenmakers et al., 2012; Westfall and
Yarkoni, 2016). The literature on lexical diversity offers
another case in point. The type/token ratio (TTR) dis-
cussed in the previous paragraph is one of several pos-
sible measures of a text’s lexical diversity. If you take
a collection of otherwise comparable texts, chances are
that the longer texts tend to have lower TTR values (see
Malvern et al., 2004, Chapter 2). This text-size depen-
dence has led quantitative linguists to abandon the use
of the TTR, even though the relationship in any given
dataset need not be that strong (see Figure 7 for an ex-
ample).

However, the reason why researchers have aban-
doned the use of the TTR is not collinearity per se.
Rather, it is that the TTR is a poor measure of what
it is supposed to capture, viz., the lexical diversity dis-
played in a text. Specifically, because of the statistical
properties of language, the TTR is pretty much bound
to conflate a text’s lexical diversity with its length. The
negative correlation between the TTR and text length
is not a big problem for statistical modelling, but it is a
symptom of a more fundamental problem: A measure
of lexical diversity should not as a matter of fact be re-
lated to text length. The fact that the TTR is shows that
it is a poor measure of lexical diversity. This problem
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Figure 7. The type/token ratio tends to be negatively
correlated with text length (here: log-2 number of to-
kens). But the problem is not that the type/token ratio
is collinear with text length; it is that the type/token ra-
tio also measures something it is not supposed to mea-
sure (length) and is a poor measure of what it is sup-
posed to measure (lexical diversity, represented here by
human ratings). Data from the French corpus published
by Vanhove et al., 2019.

is hidden if researchers mentally equate the TTR with
the construct of lexical diversity rather than remaining
cognizant of the fact that it is but an attempt to quantify
the construct—and not a successful one at that.

To be clear, it is not necessarily a problem that mea-
sures of lexical diversity empirically correlate with text
length. After all, it is possible that the lexical diversity of
longer texts is greater than that of shorter texts or vice
versa: Texts may be pithy but lexically diverse if the
writers often used le mot juste instead of elaborate cir-
cumlocutions, and long texts may be lexically more di-
verse than shorter ones if they were written by more so-
phisticated writers with more to tell. The problem with
the TTR is that it almost necessarily correlates with text
length, even if, at the construct level, the texts’ lexical
diversity does not. For instance, if you take increasingly
longer snippets of texts from the same book, you will
find that the TTR goes down (see Tweedie and Baayen,
1998). This does not mean that the writer’s vocabulary
skills went down in the process of writing the book, but
that s/he had to reuse common words (e.g., articles,
pronouns, prepositions, copula verbs, common or im-
portant content words). More generally, if your predic-
tors correlate strongly when they are not supposed to,
your problem is not collinearity, but it may be that in
trying to capture one construct, you have also captured
the one represented by the other predictor.

In sum, the interpretational challenges encountered



when predictors are collinear are not caused by the
collinearity itself but by mental shortcuts that may lead
researchers astray even in the absence of collinearity.

Collinearity does not require a statistical solution

I have argued that collinearity is not a genuine statis-
tical problem, so I do not think it should be addressed by
statistical means. Let’s take a closer look at some pop-
ular strategies that analysts resort to when their predic-
tors are collinear and the repercussions of these strate-
gies.

Residualising predictors

The first popular strategy for dealing with collinear-
ity is to residualise one collinear predictor against the
other. This means that one of the predictors is fitted as
the dependent variable in a regression model with the
other predictor(s) as the independent variable(s). The
estimated residuals are extracted from this model and
then used as a replacement for the original predictor in
the multiple regression model. York (2012) and Wurm
and Fisicaro (2014) comprehensively discuss the conse-
quences of this approach; Figure 8 highlights the main
points.

As seen in the top left and bottom right panels, resid-
ualising one of the predictors against the other and us-
ing these residuals in lieu of the original predictor does
not bias the estimates for the residualised predictor rel-
ative to the original true parameter values in Equation
(1). It also does not reduce the sample-to-sample vari-
ability of these estimates. So, as far as the residualised
predictor is concerned, there is no downside or upside
to this approach. However, as seen in the top right
and bottom left panels, the estimates of the residualiser
(i.e., the predictor that was not residualised) show less
sample-to-sample variability, but they are substantially
biased relative to the original true parameter values in
Equation (1) when the original predictors are collinear.?
The reason for this is that any variance in the outcome
that could be accounted for by both predictors is now
assigned wholly to the residualiser (see York, 2012).

Residualising one of the predictors against the other,
then, changes the meaning of the estimated coefficient
for the residualiser in a way that I suspect is opaque to
most analysts and consumers. In fact, I cannot wrap
my head around the sentence that I am about to foist
upon you: What, according to the model, would be the
mean difference if you took a large group of data points
that differed by one unit in the residualiser but whose
other predictor values differed by the same amount and
in the same direction from the values that you would
expect this predictor to have based on the linear asso-
ciation between it and the residualiser in the sample?

7

(Everything following but describes what it means for
the estimated residuals to be held constant.) Perhaps
such estimates can be useful, but hardly more than once
in a blue moon.

Dropping collinear predictors

A second approach is to drop one or more of the
collinear predictors from the model. I have no prob-
lem with this approach per se. But the problem that
it solves is not collinearity but rather that the original
model was misspecified. This approach only represents
a solution if the new model is capable of answering the
research question since, crucially, estimated coefficients
from models with different predictors do not have the
same meaning.

For instance, say you are interested in the associa-
tion between L2 grammatical knowledge and L2 read-
ing proficiency and you fit a model with L2 reading
test scores as the outcome, the learners’ scores on an
L2 grammar test as the focal predictor and their scores
on an L2 vocabulary test as a ‘control variable.” If
you decide to drop the vocabulary test scores from the
model because of their correlation with the grammar
test scores, you change the meaning of the estimate
of the coefficient for the grammar test scores. In the
full model, this estimate captures the mean difference
in reading proficiency between learners with the same
vocabulary score but with a one-unit difference in gram-
mar test scores. In the reduced model, the estimate
captures the mean difference in reading proficiency be-
tween learners with a one-unit difference in grammar
test scores, regardless of their performance on the vo-
cabulary test score. Either estimate may be useful for
addressing the research question, but this depends on
the research question, not on the degree of collinearity.
If the reduced model makes more sense than the full
model in the presence of collinearity, it would have also
made more sense in the absence of collinearity.

Something to be particularly aware of is that by drop-
ping one of the collinear predictors, you bias the esti-
mates of the other predictors relative to their original
parameter values as shown in Figure 9 (and see Note 2).
The reason is that, thanks to their correlation with the
dropped predictor, the remaining predictors can now do
some of its job in accounting for variance in the out-
come.

2 say “relative to the original true parameter values” since,
technically, the estimates in the new model are not biased ei-
ther, but they estimate something different from the estimates
in the original model.
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vertical lines). When the predictors are perfectly orthogonal, this does not happen, but this is a special case.

Averaging predictors ponents or factors from this analysis to use these in lieu
of the original predictors.

I do not mind this approach per se, either, but ana-
lysts should be aware that the meaning of their model
estimates is now different from those in the model that
they originally fitted. The estimates now express the
model’s best guess of the mean difference in the out-
come when sampling a large number of data points that
differ in one unit in the newly created variable but have

A third strategy for dealing with collinearity is to
compress the information in the collinear predictors
into a smaller set of less strongly correlated predictors.
For instance, analysts sometimes take the average of
several (possibly z-standardised) predictors and use this
average instead of the original predictors. Alternatively,
they might submit these predictors to a principal com-
ponent or factor analysis and extract one or more com-
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Figure 10. Ridge regression is a form of biased estimation, so naturally the estimates it yields are biased. When the
predictors are orthogonal, all estimates are biased towards zero (left panel). When the predictors are collinear, the
estimates for the weaker predictor are biased away from zero (right panel), whereas the estimates for the stronger

predictor are biased towards zero (not shown).

otherwise identical predictor variables. Depending
on the research question, such a model may be more
defensible than the model originally fitted. But this de-
pends on the research question, not on the degree of
collinearity between the predictors.

Using estimation methods such as ridge regression

With independently and identically distributed errors
(i.e., when the independence and homoskedasticity as-
sumptions are met), ordinary least squares regression is
guaranteed to yield unbiased estimates with the lowest
possible sample-to-sample variability. Ridge regression
and its cousins (lasso, elastic net) sacrifice unbiased-
ness in order to obtain estimates with an even lower
sample-to-sample variability. This can be particularly
useful in models optimised for predicting (as opposed to
describing or explaining; see Kuhn and Johnson, 2013;
Shmueli, 2010). Since collinearity is associated with
more variable estimates, it is understandable that ridge
regression and the like are used to tackle it. But the
result of using models that deliberately bias the esti-
mates is, quite naturally, that you end up with biased
estimates.

I illustrate this in Figure 10, for which I reanalysed
the data underlying Figure 5 using ridge regression.
(Details of the choice of the A parameter are available
in the supplementary materials, but they are not impor-
tant here.) For orthogonal predictors, all estimates are
biased towards zero. For strongly collinear predictors,
the estimates for the weaker predictor will be biased
away from zero (shown in the figure), and those for the
stronger predictor will be biased towards zero.

Biased estimation, then, reduces sampling variability

in the estimates, but at the cost of, well, biased estima-
tion. Moreover, the usefulness of standard errors and
confidence intervals for ridge regressions and its cousins
is contested (see Goeman et al., 2018), so a further
drawback is debatable statistical inference.’

In sum, popular strategies to address collinearity in-
volve giving up the unbiased estimates of ordinary least
squares regression, redefining the statistical model so
that it answers different questions from the original
model, or both. As York (2012) writes,

“Statistical ‘solutions,” such as residualiza-
tion that are often used to address collinear-
ity problems do not, in fact, address the fun-
damental issue, a limited quantity of infor-
mation, but rather serve to obfuscate it. It is
perhaps obvious to point out, but nonethe-
less important in light of the widespread
confusion on the matter, that no statistical
procedure can actually produce more infor-
mation than exists in the data.” [p. 1384]

Summary

Collinearity is a form of lack of information that is
already appropriately reflected in the output of your
statistical model. When collinearity is associated with

Swith informative prior distributions on the parameters,
Bayesian models can yield fairly narrow posterior distribu-
tions (i.e., a fairly low degree of uncertainty) for the estimates
even in the presence of collinearity. But this is achieved by
virtue of incorporating information from outside the sample
into the model by means of the prior distributions, not by con-
juring information out of thin air.
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interpretational difficulties, these difficulties are not
caused by the collinearity itself. Rather, they reveal
that the model was poorly specified (in that it answers
a question different from the one of interest), that the
analyst has overly focused on significance rather than
estimates and the uncertainty about them, or that the
analyst took a mental shortcut in interpreting the model
that could have also led them astray in the absence of
collinearity. These shortcuts include failing to interpret
parameter estimates conditional on all the other predic-
tors in the model, lending a causal or interventionist
interpretation to what is a descriptive model without
proper justification, and conflating a measure with the
construct that it is supposed to represent. Lastly, if you
do decide to deal with collinearity, make sure you can
still answer the question of interest and that any bias in
the estimates can be justified.
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