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 Insights into Criteria for Statistical Significance from Signal 
Detection Analysis 
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What is best criterion for determining statistical significance?  In psychology, the 
criterion has been   p < .05.  This criterion has been criticized since its inception, and the 
criticisms have been rejuvenated with recent failures to replicate studies published in 
top psychology journals.  Several replacement criteria have been suggested including 
reducing the alpha level to .005 or switching to other types of criteria such as Bayes 
factors or effect sizes.  Here, various decision criteria for statistical significance were 
evaluated using signal detection analysis on the outcomes of simulated data.  The signal 
detection measure of area under the curve (AUC) is a measure of discriminability with a 
value of 1 indicating perfect discriminability and 0.5 indicating chance performance.  
Applied to criteria for statistical significance, it provides an estimate of the decision 
criterion’s performance in discriminating real effects from null effects.  AUCs were high 
(M = .96, median = .97) for p values, suggesting merit in using p values to discriminate 
significant effects.  AUCs can be used to assess methodological questions such as how 
much improvement will be gained with increased sample size, how much discriminability 
will be lost with questionable research practices, and whether it is better to run a single 
high-powered study or a study plus a replication at lower powers.  AUCs were also used 
to compare performance across p values, Bayes factors, and effect size (Cohen’s d).  AUCs 
were equivalent for p values and Bayes factors and were slightly higher for effect size.  
Signal detection analysis provides separate measures of discriminability and bias.  With 
respect to bias, the specific thresholds that produced maximally-optimal utility 
depended on sample size, although this dependency was particularly notable for p values 
and less so for Bayes factors.  The application of signal detection theory to the issue of 
statistical significance highlights the need to focus on both false alarms and misses, 
rather than false alarms alone. 
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Scientists across many disciplines including 
psychology, biology, and economics use p < .05 as 
the criterion for statistical significance.  This 
threshold has recently been challenged due to 
numerous failures to replicate findings published in 
top journals (Begley & Ellis, 2012; Camerer et al., 
2016; Open Science Collaboration, 2015).  Changes in 
the recommendations for statistical significance 
include using a stricter criterion for significance 
(e.g., p < .005; Benjamin et al., 2017) and minimizing 
flexibility in decisions around data collection and 
analysis (e.g., Simmons, Nelson, & Simonsohn, 2011).  
These recommendations were designed to increase 
replicability by decreasing the false alarm rates, 
which is the rate at which null effects are incorrectly 
labeled as significant.  However, the best criteria for 
statistical significance are ones that maximize 
discriminability between real and null effects, not 
just those that minimize false alarms.  One analytic 
technique that is intended to measure the 
discriminability of a test is signal detection theory 
(Green & Swets, 1966).  Signal detection theory has 
previously been applied to evaluate p values 
(Krueger & Heck, 2017).  Here, the signal detection 
theory measure of area under the curve (AUC) is 
offered as a tool to quantify the effectiveness of 
various measures of statistical effects. 

Signal detection analysis involves categorizing 
outcomes into four categories.  Applied to criteria 
for statistical significance, a hit occurs when there is 
a true effect and the analysis correctly identifies it 
as significant (see Table 1).  A miss occurs when there 
is a true effect but the analysis identifies it as not 
significant.  A correct rejection occurs when there is 
no effect and the analysis correctly identifies it as 
not significant, and a false alarm occurs when there 
is no effect but the analysis identifies it as 
significant.  In statistics, Type I errors (false alarms) 
and Type II errors (misses) are sometimes 
considered separately, with Type I errors being a 
function of the alpha level and Type II errors being a 
function of power.  An advantage of signal detection 
theory is that it combines Type I and Type II errors 
into a single analysis of discriminability and also 

                                                   
1 This number was selected somewhat arbitrarily, and 
the results generalized to other numbers.  Larger 
number of repeats reduced the standard deviations of 
the results reported below, but did not affect the means. 
The decision to simulate sets of studies was to allow for 

considers the relative distributions of each type of 
error in the analysis of bias. 

Data Simulations for Experiment 1 

Data were simulated for two independent groups 
of 64 participants each, which corresponds to 80% 
power at an alpha level of .05 for a two-tailed 
independent-samples t-test.   

Table 1. Signal detection classification of data based on 
the example criteria p < .05 for a true effect (Cohen’s d = 
0.50) and a null effect (Cohen’s d = 0). 

 P < .05 P > .05 
“Significant” “Not Significant” 

d =.50 Hit Miss 

d = 0 False Alarm Correct 
Rejection 

 
Data for one group was sampled from a normal 

distribution with a mean of 50 and a standard 
deviation of 10 (such as might be found on a memory 
test with a total score of 100).  The data for the other 
group was sampled from a normal distribution with 
a mean of 50 (for studies with a null effect) or 45 (for 
studies with an effect size of Cohen’s d = .50) and a 
standard deviation of 10.  The data were submitted 
to an independent-samples t-test (all simulations 
and analyses were conducted in R; R Core Team, 
2017).  Details of the simulation are available in the 
online supplementary materials 
(https://osf.io/bwqm8/).  This initial simulation 
will be referred to as Experiment 1.  See appendix for 
overview of all of experiments. 

Data were simulated from 20 studies1, half of 
which had an effect size of 0 and half had a medium 
effect size (Cohen’s d = .50).  The result from each 
simulated study was classified as a hit or miss (for 
studies modeled as a medium effect) or as a correct 
rejection or false alarm (for studies modeled as a null 
effect).  The classification was based on four criteria 
for statistical significant related to p values: p < .10, 
p < .05, p < .005, and p < .001. This process was 

multiple comparisons across a variety of measures (p 
values, Bayes factors, and effect sizes). 
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repeated 100 times1.  The outcomes across all 
studies were summarized into the proportions of 
hits, misses, false alarms, and correct rejections for 
each criterion (see Figure 1).  In addition, the hit 
rates and false alarm rates were calculated for the 
purpose of plotting the receiver operator 
characteristic (ROC) curves (see Figure 2).  The hit 
rate is the proportion of studies for which the 
simulated effect was real and the criterion classified 
it as significant, and the false alarm rate is the 

proportion of studies for which the simulated effect 
was null but the criterion classified it as significant.  
To clarify, whereas the proportion of hits (as plotted 
in Figure 1) is the number of hits divided by the total 
number of studies, the hit rate (plotted in Figure 2) 
is the number of hits divided by the number of 
studies modeled as a real effect.  Bayes factors, 
which are also plotted, are discussed below. 

 
 

 

Figure 1. Proportion of each outcome as a function of the decision criterion for significance. Brighter colors correspond 
to errors and dark colors correspond to correct classifications.  For criteria of Bayes factors greater than 2, 3, or 10, 
studies that produced a Bayes factor less than the criterion but greater than the inverse of the criterion were 
considered inconclusive, which is why the total proportion of outcomes does not equal 1. 

 

Figure 2. Mean hit rates are plotted as a function of mean false alarm rates and the decision criterion (see legend) for 
one set of 20 studies (left panel) and averaged across all 100 sets of 20 studies (right panel).  ROC curves are plotted for 
criteria based on p values (thick green line) and Bayes factor (thin blue line).  The two lines are identical (as was the case 
for all 100 sets of 20 studies).  Area under the curve (AUC) is the shaded area. 
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In selecting a criterion for statistical significance, 

researchers must select a measure (e.g., p values) 
and a threshold within that measure (e.g., alpha = 
.05).  A measure can be evaluated by assessing its 
ability to discriminate between real and null effects, 
which can be quantified by calculating the area 
under the ROC curve (AUC; Macmillan & Creelman, 
2008).  With respect to evaluating thresholds for a 
specific measure (e.g., comparing .005 to .05), the 
location of each threshold on the ROC curve can be 
calculated.  Location on the curve is a measure of 
bias.  Each of these measures will be considered in 
turn. 

To measure discriminability of p values, the AUC 
was computed 100 times, once for each set of 20 
studies.  Unlike the discriminability measure of d’, 
the discriminability measure of AUC makes no 
assumptions regarding the underlying distributions, 
which is critical because distributions of p values are 
not normally distributed.  Higher AUCs indicate 
better ability to discriminate real effects from null 
effects.  If discrimination were perfect, the curve 
would follow the left and top boundaries in Figure 2, 
and the AUC would equal 1 (i.e. the entire area would 
be under the curve).  If discrimination were at 
chance, the curve would follow the diagonal line in 
Figure 2, and the AUC would be .5 (i.e. only 50% of 
the area would be under the curve).  As is apparent 
in Figure 2, p values produced curves that were 
closer to 1 (perfect performance) than to .5 (chance 
performance).  The mean AUC was .96 (median = .97, 
SD = .04).  Thus, p values were effective, though not 
perfect, at discriminating between real and null 
effects.  This aligns with conclusions from other 
valuations of p values (e.g., Krueger & Heck, 2017, 
2018).  These AUC values suggest some benefit in 
using p values, at least as a continuous measure 
without necessarily having strict thresholds for 
significance (McShane, Gal, Gelman, Robert, & 
Tackett, 2018).  Perhaps alternative methods to 
reduce false alarm rates might be more beneficial 
than to eliminate p values altogether (e.g., Trafimow 
& Marks, 2015).  Note that measures of 
discriminability evaluate p values as a measure 
without consideration of the specific alpha value 

adopted as the criterion.  Specific alpha levels relate 
to bias, and are discussed below. 

What could improve discriminability when using 
p values as the criterion for statistical significance?  
One suggestion has been to lower the threshold 
from .05 to .005.  This would not alter the 
discriminability because discriminability relates to p 
values as a whole, not to specific thresholds. 
Thresholds refer to locations on the curve, and 
these dictate bias, rather than discriminability.  
Signal detection theory distinguishes between 
discriminability and bias.  As applied to the case of 
criteria for statistical significance, discriminability 
refers to the criterion’s performance at identifying 
real effects versus null effects, and bias refers to 
whether the errors tend to be false alarms or misses. 
Assessing bias can be useful for selecting the 
appropriate criterion for asserting statistical 
significance.  For example, assume that the cost of a 
miss is equivalent to the cost of a false alarm in a 
particular field. In that case, optimal utility would be 
achieved by setting the criterion in such a way that 
its point on the ROC curve is the one that falls 
closest to the upper left corner in Figure 2.  The 
Euclidean distance between each point on the ROC 
curve and the point of perfect performance is 
plotted in Figure 3.  For the scenario that was 
simulated, an alpha level closer to the blue dot, 
which aligns with an alpha level of .10, would come 
closer to achieving that maximum-utility outcome 
than an alpha level of .005.  Lowering the criterion 
for statistical significance to p < .005 would increase 
the number of studies that will replicate by 
decreasing false alarms, but it would do so at the 
cost of missing real effects (see also Krueger & Heck, 
2017).  Note the proportion of misses in Figure 1 
across the various criteria, particularly for the 
criterion of p < .005.  Misses are bad for science 
(Fiedler, Kutzner, & Krueger, 2012; Murayama, 
Pekrun, & Fiedler, 2014).  Assuming that null effects 
are theoretically interesting and practically 
important, it is important to determine which null 
effects are due to a genuine lack of difference versus 
a miss of a true effect.  Is the trade-off to increase 
replicability worth the large increase in misses?  
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Perhaps science can adopt alternative means to 
improve replicability without sacrificing so many 
missed hits, such as increasing incentives for 
publishing statistically- and scientifically-sound 
significant findings and also publishing (statistically- 
and scientifically-sound) null results. 

 

 

Figure 3.  Distance to perfection was calculated as the 
Euclidean distance between each point on the ROC curve 
(see Figure 2) and the top-left corner (which corresponds 
to 100% hit rate and 0% false alarm rate) across all 100 
sets of 20 studies.  A lower distance to perfection score 
indicates better discriminability between real and null 
effects.  Error bars represent 95% confidence intervals. 

 
One effective way to improve replicability is to 

increase sample size.  Many studies are 
underpowered (e.g., Etz & Vandekerckhove, 2016; 
Fraley & Vazire, 2014; Ioannidis, 2005; Sedlmeier & 
Gigerenzer, 1989).  The simulations in Experiment 1 
showed that at a power of 80% (at an alpha level of 
.05), the mean AUC for p values was .96.  At a power 
of 50%, the mean AUC for p values was .85 (median 
= .87; SD = .10).  Increasing power to 90% produced 
a mean AUC of .975 (median = .99; SD = .03), 
increasing power to 95% produced a mean AUC of 
.984 (median = 1; SD = .03), and increasing power to 

99% produced a mean AUC of .999 (median = 1; SD = 
.004).  If resources are unlimited, increasing sample 
size to increase power is an effective way of 
improving discriminability of real effects from null 
effects (Krueger & Heck, 2017). 

Assuming limited resources, one might wonder 
whether it is better to run one high-powered study 
or a study plus a replication that are both at 80% 
power.  AUCs can help a researcher make these 
decisions.  Two additional “experiments” (i.e., sets of 
simulations) were conducted.  In Experiment 2, 
everything was the same as in Experiment 1 except 
the sample size for each group was 105 (which 
corresponds to 95% power at an alpha level of .05).  
In Experiment 3, everything was the same as in 
Experiment 1 except that for every study that was 
simulated, a second study with the same parameters 
was simulated and the higher p value was retained.  
This emulates a situation for which a study is 
conducted that produces a significant p value and 
then a replication fails to find a significant effect, so 
the effect is considered not significant.  This is why 
the higher p value was retained.  The mean AUC for 
Experiment 2 was .99 (median = 1; SD = .01).  The 
mean AUC for Experiment 3 was .97 (median = .99; 
SD = .04).  This suggests that higher power produces 
better discriminability than replicating a study with 
both the original and replication studies at 80% 
power.  However, the higher-powered study 
produced more false alarms whereas the study plus 
replication produced few false alarms but more 
misses (see Figure 4).  Again, researchers will need 
to decide what trade-offs between false alarms and 
misses make the most sense for their science.  
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Figure 4.  Proportion of each outcome as a function of the decision criterion and whether one or two studies were run.  
The left panel shows the outcomes across 100 sets of 20 studies, each with 105 data points per group (which 
corresponds to 95% power at alpha = .05).  The right panel shows the outcomes across 100 sets of 20 studies.  For each 
study, a replication was conducted.  Both the original study and the replication had 64 data points per group (which 
corresponds to 80% power at alpha = .05).  In order for an effect to meet the decision criterion, both the original study 
and the replication had to produce values that exceeded the decision criterion.  For example, for the criterion of p < .05, 
both the study and the replication had to produce p values < .05, otherwise the set of studies was considered not 
significant. 

 
Power, rather than effect size, is more important 

for discriminability.  In Experiment 4, data were 
simulated at 80% power (at an alpha of .05) for each 
of 8 effect sizes ranging from d = .1 - .8.  The AUCs 
for each were approximately the same (M = .95; 
range of means for each effect size = .947 - .961; 
variations due to chance rather than systematic 
differences).  As shown in Figure 5, when power was 
consistent, there were also no substantial 
differences in the rate of the different outcomes.  
Thus, while studying bigger effects will reduce the 
number of participants needed, it will not improve 
discriminability on its own. 

 
 
 
 
 
 

Questionable Research Practices 

Some recommendations to improve replicability 
concern practices to avoid.  These have been labeled 
questionable research practices, and have been 
identified as particularly problematic (Simmons et 
al., 2011).  AUCs can be used to assess the degree to 
which doing various questionable research 
practices reduces discriminability.  One 
recommendation is to designate the number of 
participants to be run ahead of time, rather than use 
an optional stopping rule (Simmons et al., 2011).   

In a new set of simulations (Experiment 5), each 
simulated study was conducted with 30 participants 
per group with either a Cohen’s d = .50 or d = 0.  A 
lower sample size was used given that published 
studies tend to be underpowered  
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Figure 5.  Proportion of SDT outcomes is plotted as a 
function of effect size for the single criterion for 
statistical significance of p < .05.  Data were all simulated 
at a power of 80% at an alpha of .05. 

 
As in Experiment 1, 20 studies were simulated, 

and this was repeated this 100 times.  To try to 
mimic typical use of the optional stopping rule, for 
each study, if the p value was between .20 and .05, 
an additional 10 participants were added per group. 
After this addition, if the p value was less than .05, 
data collection stopped; otherwise the process was 
repeated up to 9 more times.  On average, p-hacking 
in the form of adding more participants occurred 4.3 
times in each set of 20 studies (SD = 2; Range = 0 – 
11).  The optional stopping rule produced differences 
in the AUCs relative to the original sample, but the 
differences were not systematic.  Sometimes 
running additional unplanned participants 
improved discriminability and other times it 
worsened discriminability (see Figure 6).  How can 
this questionable research practice have no impact 
the discriminability of real effects from null effects?  
The reason is that these questionable research 
practices increase the false alarm rate but they also 
increase the hit rate (see Figure 7).  Much of the 
attention on the replication crisis has sought to 
minimize false alarms, but it is also necessary to 
discuss the corresponding increase in the number of 
misses (i.e. the decrease in the number of hits). 
Discriminability between real effects and null effects 
takes into account both the false alarm rate and the 
hit rate.   
 
 

 

Figure 6.  The area under the curve (AUC) for hacked 
studies plotted as a function of the AUC for the original 
studies.  A higher AUC indicates better discrimination 
between real and null effects.  The line is at unity.  Data 
points above the line indicate better discriminability for 
the hacked studies, and data points below the line 
indicate better discriminability for the original studies. 

 
A decreased hit rate directly corresponds to an 
increased miss rate.  Furthermore, the data were 
simulated so that the studies were underpowered.  
Although p-hacking increased the false alarm rates 
(see also Ioannidis, 2005), adding participants 
increased power, which is good for discriminability.  
To be clear, the recommendation is not to p-hack by 
running participants until the effect is significant.  
Instead, experiments should be run with sufficient 
power or only allow restricted flexibility in stopping 
data collection such as, for example, by following the 
recommendations of Lakens (2014) or using 
sequential Bayes Factor with a minimum and 
maximum N (Schönbrodt & Wagenmakers, 2018).  
But with respect to interpreting published research, 
the current simulations suggest that flexibility in 
data collection via an optional stopping rule does 
not necessarily void the findings (see also Murayama 
et al., 2014; Salomon, 2015).  In these simulations, p-
hacking increased the hit rate by 28% while only 
increasing the false alarm rate by 12%.  Note, 
however, that p-hacking via optional stopping rules 
does not always increase hit rates more than false 
alarm rates.  If power is high (e.g., > 99%), 
simulations showed that hit rates increased from 
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99.9% to 100% but false alarm rates increased from 
5.4% to 9.8%.    

 
 

 

Figure 7. Proportion of hits, false alarms, misses, and 
correct rejections as a function of whether the studies 
were the original sample of 30 data points per group or 
had been p-hacked via an optional stopping rule.  
Outcomes shown only for the decision criterion of p < 
.05.  Note that the seeming benefit for p-hacking is 
dependent on the low power of the simulated study. 

Bayes Factor Versus p values 

An alternative to p values is to use Bayes factors 
(e.g., Dienes, 2011; Kass & Raftery, 1995; Kruschke, 
2013; Lee & Wagenmakers, 2005; Rouder, Speckman, 
Sun, Morey, & Iverson, 2009).  Bayes factor refers to 
the ratio of likelihoods of the data for the alternative 
hypothesis relative to the null hypothesis. A Bayes 
factor of 1 corresponds to equal likelihood for the 
alternative and the null hypotheses, and a Bayes 
factor greater than 1 is evidence for the alternative 
hypothesis relative to the null hypothesis.  Bayes 
factors quantify how well a hypothesis predicts the 
data relative to a competing hypothesis (such as the 
null hypothesis), and thus is a continuous measure 
for which the focus is on the strength of the 
evidence, rather than a specific cut-off for deeming 
effects significant or not.  However, Bayes factors 
between 1-3 are considered weak or anecdotal 
evidence, so a Bayes factor of 3 could be considered 
a decision criterion akin to a criterion for 
significance (see Table 2), though not everyone 

agrees with the idea of using strict cut-offs (e.g., 
Morey, 2015). 

Table 2. Overview of relationship between Bayes factor 
and conclusion about the evidence being in favor of the 
alternative hypothesis (HA) or the null hypothesis (H0).  
Adapted from Wetzels et al. (2011), Lakens (2016), and 
Jeffreys (1961). 

Bayes factor Interpretation 

>100 Decisive evidence for HA over H0 

30 - 100 Very strong evidence for HA 
over H0 

10 - 30 Strong evidence for HA over H0 

3 - 10 Substantial evidence for HA over 
H0 

1-3 Anecdotal evidence for HA over 
H0 

1 No evidence 

1/3 - 1 Anecdotal evidence for H0 over 
HA 

1/10 – 1/3 Substantial evidence for H0 over 
HA 

1/30 – 1/10 Strong evidence for H0 over HA 

1/100 – 1/10 Very strong evidence for H0 
over HA 

< 1/100 Decisive evidence for H0 over HA 
 
 
To measure discriminability and bias for Bayes 

factors, the studies simulated in Experiment 1 were 
also evaluated using four decision criteria related to 
Bayes factor (BF): BF > 1, BF > 2, BF > 3, and BF > 10.  
Studies were classified as shown in Table 3.  Note 
that for Bayes factors that fell in between the 
criterion and its inverse (e.g., 1/3 – 3), no 
classification was made because the data were 
inconclusive.  This is why the outcomes do not sum 
to 1 in Figure 1.  The calculation of the AUCs is a 
function of the Bayes factor itself, rather  
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Table 3. Signal detection classification of data based on the example criteria Bayes factor > 3 for a true effect (Cohen’s d 
= 0.50) and a null effect (Cohen’s d = 0). 
 

 
Bayes factor >3 

“Significant” 
Bayes factor < 1/3 
“Not Significant” 

1/3 < Bayes Factor < 3 
“Inconclusive” 

d = .50 Hit Miss No classification 

d = 0 False Alarm Correct Rejection No classification 
 

than classifications of outcomes, so even though not 
all studies could be classified into the four SDT 
outcomes, all studies contributed to the AUC 
calculation. The BayesFactor R package (Morey, 
Rouder, & Jamil, 2014) was used to calculate the 
Bayes factors.  The default Cauchy prior was used 
when calculating Bayes factors, but different priors 
produced the same AUC results.  Changing the prior 
produced shifts along the ROC curve but did not 
change discriminability. 

As shown in Figure 2, the AUCs related to Bayes 
factor were also quite high.  In fact, the AUCs for 
Bayes factor corresponded perfectly to the AUCs for 
p values.  This means that for the situation simulated 
here, Bayes factors are not any better (or worse) 
than p values at discriminating real effects from null 
effects.  In other words, Bayes factor incurs no 
advantage over p values at detecting a real effect 
versus a null effect for the current scenario.  This is 
because Bayes factors are redundant with p values 
for a given sample size.  Both p values and Bayes 
factors can be calculated from the t-statistic and the 
sample size, so it is expected that they would be 
related.  In these simulations, there was a near-
perfect linear relationship between the (log of the) 
Bayes factors and the (log of the) p values, as has 
been shown previously (Benjamin et al., 2017; 
Krueger & Heck, 2018; Wetzels et al., 2011).  
Equivalency in AUCs between Bayes factors and p 
values generalized to other scenarios as well 
including one-sample t-tests and correlations (see 
Figure 8). 

Although the discriminability between p values 
and Bayes factors was equivalent across a variety of 
situations, as revealed by equal AUCs (see Figures 2, 
8, and 9), the exact relationship between them 
differed as a function of sample size.  In Experiment 
6, for 30 different sample sizes ranging from 32 to 
2000 per group, 100 simulations of 20 studies were 
conducted (10 with a Cohen’s d modeled at .50 and 
10 with a Cohen’s d modeled at 0).  For each sample 
size, a linear regression was conducted to predict 
the log of the Bayes factor from the log of the p 
value.  The results are shown in Figure 9.  These 
simulations show near-complete redundancy 
between p values and Bayes factors.  This 
redundancy also supports the conclusion that for 
the conditions simulated, p values and Bayes factors 
are equally adept at distinguishing real effects from 
null effects. 
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Figure 8.  Simulations were run for 20 studies (repeated 
100 times) for 3 effect sizes for 3 power levels (two-tailed 
at alpha = .05) for 4 types of statistical tests. AUCs for the 
Bayes factors are plotted as a function of AUCs for the p 
values. They are identical in every case, which is 
consistent with the claims of equal discriminability 
between p values and Bayes factors.  Size of the symbol 
corresponds to effect size, which is Cohen’s d (for two-
sample t-tests), Cohen’s dz (for one-sample t-tests), and 
r*2 (for correlations). For the uneven two-sample t test, 
group 2 had 20% more participants than group 1. The 
plot collapses across all conditions given that the 
patterns were the same regardless of test type, power, or 
effect size.  
 

 
 

 

Figure 9.  Outcomes from 100 simulations of 20 studies (half simulated as a null effect; half as a medium effect) for each 
of 30 different sample sizes ranging from 32 to 2000.  Color corresponds to sample size.  Panel a shows the area under 
the curve (AUC) for p values and Bayes factors as a function of sample size.  A bigger AUC indicates better discrimination 
between real and null effects.  Panel b shows the relationship between p value and Bayes in the range for which p values 
are highest (the inset shows the relationship for the entire range, and the dotted box shows the area that has been 
expanded in the main figure).  The legend corresponds to sample size.  The black vertical line corresponds to a p value of 
.05, and the black horizontal line corresponds to a Bayes factor of 1.  Panels c and d show the intercepts and slopes from 
linear regressions that predict the log of the Bayes factor from the log of the p values.  The intercept is the p value that 
corresponds to a Bayes factor of 1, so it corresponds to the value of the p value along the horizontal line in panel b.  The 
slope, plotted in panel d, corresponds to the steepness of the curves in panel b
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Figure 10. Left column shows results from Experiment 7 (equal number of null and real effects) and right column shows 
results from Experiment 8 (four times as many null as real effects).  In the top row, hit rates are plotted as a function of 
false alarm rates and criterion for Experiment 7 (left panel) and Experiment 8 (right panel).  Each point corresponds to a 
different decision criterion related to the posterior odds (BF > 1, 2, 3, and 10, not labeled but for each cluster of 4, the 
points go sequentially from top-right corner to bottom-left corner) as a function of the prior odds (see legend).  The 
receiver operator characteristic (ROC) curves are plotted for three different sets of prior odds for each panel.  The area 
under the curve (AUC) is shown in grey. The curves and AUCs are identical across all prior odds in each panel.  In the 
bottom row, proportion of each outcome (calculated as the number of each outcome divided by the total number of 
studies) across prior odds is shown only for the decision criterion of Bayes factor > 3.
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Despite equivalence in discriminability between 

p values and Bayes factor, these simulations 
illustrate a previously acknowledged discrepancy in 
the conclusions supported by the two types of 
criteria (Lindley, 1957).  Specifically, in Figure 9b, all 
data points to the left of the black vertical line that 
are also below the black horizontal line would be 
classified as significant according to the criterion of 
p < .05 but according to a Bayes factor 
interpretation, the evidence would favor the null 
hypothesis over the alternative.  

This illustrates why it is possible to get results for 
which the p value indicates a significant finding (i.e. 
evidence for the alternative hypothesis) but the 
Bayes factor shows evidence for the null hypothesis 
relative to the alternative.  These conflicting 
outcomes occurred in studies for which sample size 
(or, more precisely, power) was high.  These 
simulations help illustrate the point that for high-
powered studies, a p value of .05 is  more evidence 
for the null hypothesis than for the alternative 
hypothesis (Lakens, 2015).  When power is high, 
researchers using p values to determine statistical 
significance should use a lower criterion 

Including Priors 

Whereas Bayes factors do not take into account 
the prior odds of an effect being real, the posterior 
odds do. Posterior odds can be calculated by 
multiplying the Bayes factor by the prior odds (see 
Equation 1).  Posterior odds are the probability of the 
alternative hypothesis (M = H1) given the data (D) 
over the null hypothesis (M = H0) given the data (D).  
To evaluate the effect of prior odds on 
discriminability, two additional experiments were 
conducted.  In Experiment 7, the same conditions as 
in Experiment 1 were simulated, but AUCs were 
calculated for posterior odds across three different 
prior odds: 0.1, 1, and 10.   

 

Equation 1.  

In Experiment 8, everything was the same as in 
Experiment 1 except there were four times as many 
studies with d = 0 (16 studies) than with d = .5 (4 
studies).  AUCs were calculated for posterior odds 
across three prior odds (.25, 1, 4).  As shown in Figure 
10, adding information about prior odds to the Bayes 
factor merely shifted the points along the ROC curve 
but did not alter discriminability regardless of the 
accuracy of the prior odds.  In addition, changing the 
proportion of real effects did not have much impact 
on discriminability.  In Experiment 8, the mean AUC 
was .95 (median = .97, SD = .07) for all sets of prior 
odds (as well as for p values), which was similar to 
the mean AUC of .96 (median = .98, SD = .04) for all 
sets of prior odds (and for p values) in Experiment 7. 

Except for Experiment 7, all of the simulations 
conducted involved simulating studies for which 
half had a true effect and half had a null effect.  This 
assumes that effects are to be expected half of the 
time, which is an assumption that is unlikely to be 
true.  The results from Experiment 7 show, however, 
that similar patterns are found even when the null 
hypothesis is likely to be true.  Unreported 
simulations show similar patterns even when the 
alternative hypothesis is likely to be true.  Thus, the 
results regarding discriminability (measured with 
AUCs) are independent of specific assumptions 
regarding the likelihood of the null hypothesis.  Put 
another way, the discriminability of p values and 
Bayes factors are high in situations for which real 
effects are likely and in situations for which real 
effects are unlikely.  Obviously, more p values and 
Bayes factors reach thresholds for significance 
when there are more significant effects, so 
“significant” effects are more for ‘safe’ studies than 
‘risky’ studies (Krueger & Heck, 2018).  Nevertheless, 
the diagnosticity of the p value (and of Bayes factor) 
is high regardless of the likelihood of finding a real 
effect. 
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Bayes Factor and Bias 

As with p values, we can consider bias related to 
Bayes factors.  As shown in Figure 3, the cut-offs 
that achieved maximize utility assuming equal 
weights given to false alarms and misses was Bayes 
factor > 1.  This contrasts with the typical 
interpretation of Bayes factor (e.g., Table 2) for 
which Bayes factors between 1-3 are considered 
anecdotal evidence. 

Unlike with p values, the threshold that should be 
used for Bayes factors did not vary as much with 
changes in sample size as did the alpha levels of the 
p values (see Figure 10).  Compare the red points to 
the green points, which correspond to p < .10 and p 
< .005.  For smaller sample sizes, the red points 
achieve better performance than the green points, 
but for larger sample sizes, the relationship flips and 
the green points achieve better performance.  This 
repeats the point made earlier that at larger sample 
sizes, a lower alpha should be used.  For Bayes 
factors, compare the light blue and purple points, 
which correspond to Bayes factor thresholds of 1 
and 3.  For smaller sample sizes, the light blue points 
achieved better performance, but for larger sample 
sizes, the purple points achieved better 
performance. However, unlike with p values, this 
reversal was not nearly as dramatic, and the decision 
criterion of Bayes factor > 1 performed better than 
or nearly as good as the other thresholds across all 
sample sizes.  It is also worth noting that as sample 
size increases, all Bayes factor criteria improved, 
whereas p values plateaued at their alpha levels.  
Thus, another advantage of Bayes factors is that 
increasing the amount of evidence increases their 
ability to accurately detect an effect. 

Signal detection analysis is a tool that scientists 
can use to evaluate relative trade-offs across various 
decision criteria.  This is not to say that scientists 
should only use or always use decision criteria (as 
opposed to estimations of effect size, for example), 
but that when a criterion for statistical significance 

is adopted, consideration should be made for both 
false alarms and misses.  If the goal is to maximize 
optimal utility, given equal weight to hits and 
correct rejections (or, equivalently, equal tolerance 
for false alarms and misses), distance to perfection 
can be used to assess various criteria.  In the case of 
a medium effect size  
with 64 participants per group, the decision criteria 
of p < .10, p < .05, and BF > 1 led to better 
performance than the criteria of p < .005, BF > 3, and 
BF > 10.  As sample size increased, the criteria of p < 
.005 and all tested Bayes factor thresholds led to 
better performance than p < .10.  

Discriminability with Effect Size 

As a final note, discriminability (as measured 
using AUCs) was as good or better when using effect 
size (in this case, Cohen’s d) than p values or Bayes 
factors (see Figure 14).  Effect size improved 
discriminability because Cohen’s d is signed (i.e. 
differentiates -.5 from .5).  When discriminability 
was assessed using absolute effect size, the AUCs 
matched those obtained with p values and Bayes 
factors.  The measure of effect size does not have 
the feature of a specific decision criterion for 
statistical significance, so for researchers who want 
strict thresholds for significance, effect size is 
unlikely to be a useful tool.  But for researchers who 
want to know the strength of the evidence or the 
magnitude of the effect, effect size would be useful. 
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Figure 11. Distance to perfection was calculated as the Euclidean distance between each point on the ROC curve (see 
Figure 2) and the top-left corner (which corresponds to 100% hit rate and 0% false alarm rate).  Distance to perfection 
scores were calculated for each of 100 sets of 20 studies (half of which were modeled as a null effect and half of which 
were modeled with Cohen’s d = .5) for each sample size.  The data are grouped by sample size, and color corresponds to 
the criterion for statistical significance. Errors bars correspond to 95% confidence intervals. 

 
 
 

 

Figure 12. Area under the curve (AUC) for Cohen’s d as a 
function of the AUCs for p values and Bayes factors (BF).  
Data are from Experiment 1.  Each point corresponds to 
one set of 20 studies with half modeled with Cohen’s d = 
.5 and half modeled with Cohen’s d = 0. Dotted line is at 
unity. 

 

 

Conclusion 

An essential part of science is that it is replicable.  
But another essential part of science is to uncover 
new discoveries.  Changing the standard criterion 
for statistical significance merely moves the 
standard along the ROC curve.  Any change to this 
standard such as decreasing the required p value or 
using Bayes factors instead will not improve 
discriminability between real and null effects. 
Rather, a change to be more conservative will 
decrease false alarm rates at the expense of 
increasing miss rates.  False alarm rates should not 
be considered in isolation without also considering 
miss rates.  Rather, researchers should consider the 
relative importance for each in deciding the 
criterion to adopt. This aligns with other 
recommendations for researchers to justify their 
alphas (Lakens et al., 2018).  In addition, given that 
true null results can be theoretically interesting and 
practically important, a conservative criterion can 
produce critically misleading interpretations by 
labeling real effects as if they were null effects.  
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Moving forward, the recommendation is to 
acknowledge the relationship between false alarms 
and misses, rather than implement standards based 
solely on false alarm rates. 
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