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Abstract

Background: Management practices can modify the productivity of forests and the associated microbial diversity of soil.
The soil mycobiota is considered a key factor in the ecological functions of forests. Forests of Nothofagus pumilio (Poepp.
& Endl.) Krasser (Nothofagaceae) are the main source of timber and one of the most important economic resources
in the province of Tierra del Fuego (Argentina). However, there is no information on the impact of forest management
interventions for the soil mycobiota, which can be reliable biological indicators of disturbance.

Methods: Fungi were isolated from samples of soil collected under several Nothofagus pumilio forests subjected to different
types of management and periods of time since the intervention. Types of management were represented by harvested
forest with a shelter wood cutting, stockpile area and control forest without intervention and the periods of time since
intervention were 1, 5-10 and 50 years. Species richness, evenness and Shannon’s diversity index of the mycobiota in each
condition of management were calculated. Additionally, the effect of seasonality was analysed.

Results: The soil mycobiota was represented by 70 taxa. Richness and/or Shannon’s diversity index of the mycobiota
between undisturbed forest and stockpile area were higher in May (autumn) than in September or November. There were
no differences in mycobiota diversity between dates in the harvested forest.

Conclusions: Our results indicate that the forest intervention per se did not negatively affect the soil culturable mycobiota
composition of N. pumilio forests in Tierra del Fuego (Argentina).

Keywords: Biodiversity, forest management impact, soil fungi, sustainable forest management

Introduction

Fungi are an important and highly diverse component
of soil microbial communities (Tedersoo et al. 2014).
In forest ecosystems, they perform essential ecological
functionsincluding decomposition of organic matter and
nutrient cycling and are involved in biotic interactions
such as mycorrhizal symbioses. Understanding whether

forest-management practices affect the diversity of
fungi and/or influence their spatial patterns is one
of the central issues in soil microbial ecology (Green
and Bohannan 2006). The whole soil microbiota is
involved in the formation and stabilisation of organic
matter but fungi play a greater role than bacteria in the
metabolism and growth of trees. They are also involved
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in most processes that occur in the forest soil, such as
the ones related to soil formation, nutrient availability
and recycling of organic matter (Eliades et al. 2015).
However, anthropic activities such as management
practices can affect the forest productivity and the level
of timber harvesting that the forest can sustain as well as
the number and quality of habitats and of the associated
biodiversity (Martinez Pastur et al. 2002).

Fifty-five percent of the area in the province of
Tierra del Fuego (Argentina) is currently covered by
forests of Nothofagus pumilio (Poepp. & Endl.) Krasser
(Nothofagaceae), and, within the harvested forest, 2-3%
are covered by stockpile (“canchén”) areas (Martinez
Pastur et al. 2007). Nothofagus pumilio is the most
important source of timber in southern Patagonia, and
the main economic resource since the 19 century. These
forests have been managed using several silvicultural
systems ranging from light selective harvests to clear-
cuts (Gea et al. 2004). Selective cuttings with retained
shelter wood or variable-retention cuttings have been
the most common systems used over the last decade
(Martinez Pastur et al. 2000, 2009). The period of time
since intervention also affects the degree of tree cover
in the forest.

Scorsetti et al. (2012) described the pathogenic
and enzyme activities of the entomopathogenic
fungus Tolypocladium cylindrosporum (Ascomycota:
Hypocreales) from N. pumilio forests in Tierra del Fuego,
Argentina. More recently, Eliades et al. (2015) reported
preliminary data on the growth and enzymatic abilities
of the soil fungus Humicolopsis cephalosporioides at
different incubation temperatures collected under
N. pumilio forests. However, studies comparing the
soil fungal composition and diversity among forests
dominated by the same tree species but under different
management practices and periods of time since
intervention are scarce. The decay rate in these forests
is low and there is no information available on the role
of these fungi in ecosystem stability so analysing the
responses of the diversity of soil fungi to anthropological
interventions is a high priority for understanding
how forest management practices affect the ecology
of N. pumilio forests and their components. Therefore,
forest management practices can be considered key
factors in the ecology of the Patagonian region. The
type, intensity and frequency of management may
affect soil microorganisms which are reliable biological
indicators of disturbance because they react easily
to environmental changes such as the soil chemical
and physical changes related to timber harvesting
(Jurgensen et al. 1997). Hartmann et al. (2014)
reported less resistance and resilience of fungi in forest
soils compared to bacteria, thus we hypothesised that
management of N. pumilio forests in Tierra del Fuego
causes a decrease in the species richness and diversity
of fungi even following intervention. Therefore, the aim
of this study was to assess and compare the seasonal
structure of soil fungal communities under N. pumilio
forests subjected to different management practices
and periods of time since the intervention in Tierra del
Fuego, Argentina.
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Methods

Study area

Study sites are located in the forest-steppe ecotone of
the central part of Tierra del Fuego Island, Argentina
(54° 27°’S, 67°27'W; Fig. 1). The forests correspond to
the sub-Antarctic forest type (37°-60° South latitude)
and are composed of Nothofagus pumilio, N. antarctica
(Forster f.) Oersted and N. betuloides (Mirb.) Oersted
as dominant trees sparsely mixed with Drymis winteri
Forster & Forster f, Maytenus magellanica (Lam.)
Hooker f. and Embothrium coccineum Forster & Forster
f. (Moore 1983; Tuhkanem et al. 1990). The landscape
occupied by forests has mostly acid brown soils of
glacial origin with loess and alluvial materials in the
foothills (Frederiksen 1988; Soil Survey Staff 1960).

In this region, the climate is subpolar with short,
cool summers and long, snowy winters, influenced
by Antarctic ice masses and cold oceanic currents.
Mean daily air temperatures above 0°C are found only
during three months a year, and the growing season
is restricted to approximately five months. Rainfall,
including snowfall, reaches up to 600 mm per year.
Annual average wind speed outside the forests is 8 km
h™, reaching up to 100 km h™* during storms (Barrera et
al. 2000; Martinez Pastur et al. 2009).

Study sites comprised monospecific N. pumilio
forests and were determined using satellite images
from different years and the database of the Natural
Resources forest area of the Province. Sites were
selected based on their high similarity in soil type, slope,
elevation, and land-use history (Martinez Pastur et al.
1997). The harvested forest stands were selected in the
central zone of the island, where it is possible to find
old and recent cuttings corresponding to the proposed
treatments.

Two treatments (types of forest management and
period of time since the intervention) were considered.
Three types of forest management were selected: (i)
harvested forest (HF) with shelter wood cutting; (ii)
stockpile area (SA), an area in the forest used during
times of harvest to further process stems or trees
extracted from the forest, store them, and then load
out the logs. This is a designated area that is usually
cleared of obstacles such as trees and stumps, and can
vary in size depending on the processing, storage and
loading-out requirements. This area is ca. 60 x 25 m?
and represents 2-3% of the harvested forest (Martinez
Pastur et al. 2007); (iii) control forest (CF), i.e. without
intervention. Harvesting took place during the summer,
and assessments were done 1 year, between 5 and 10
years, and 50 years after intervention. Nine stands of
forest types (i) and (ii) were selected with three stands
for each time period after intervention. In addition, nine
unharvested old-growth forests (type iii) without signs
of intervention were selected near each harvested forest.
These old-growth forests consist of trees with similar
diameter at breast height and dominant stand height
(28 m total height, 528 trees ha?, 40.6 cm diameter at
breast height, 65.0 m? ha' basal area; Lencinas et al.
2011), corresponding to sites of quality II according to
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Martinez Pastur et al. (1997). The three HF sites 1 year
after intervention selected were: Ewan River (EW 1),
Los Cerros Ranch (LC 1) and Lenga Patagonia Ranch (LP
1). Ushuaia Ranch a (EUa 5-10), Ushuaia Ranch b (EUb
5-10) and Ewan River (EW 5-10) were the three HF
sites 5-10 years after intervention, and Ushuaia Ranch
(EU 50), Lenga Patagonia Ranch (LP 50) and Reserva
Corazoén de la Isla (RCI 50) were the three HF sites 50
years after intervention, as shown in Figure 1. The size
of each selected site was between 30-60 hectares.

Soil sampling

A transect with five points every 10 m was established
within each site. At each point of the transect, three
composite samples of soil (each consisting of four
subsamples) were collected from the mineral horizon
(0-10 cm) using a hole borer according to Dick et al.
(1996). Sampling was carried out in November 2009,
May and September 2010, which corresponded to
late spring, autumn and early spring, respectively.
After collection, samples (between 500 g and 1 kg)
were stored in plastic bags at 4°C until processing and

FIGURE 1: Location of sample sites in Tierra del Fuego
(54° 27’S,67° 27'W).

(1) 1 year (Ewan River); (2) 1 year (Los Cerros
Ranch); (3) 1 year (Lenga Patagonia Ranch);
(4) 5-10 years (Ushuaia Ranch a); (5) 5-10
years (Ushuaia Ranch b); (6) 5-10 years
(Ewan River); (7) 50 years (Ushuaia Ranch);
(8) 50 years (Lenga Patagonia Ranch); (9) 50
years (Reserva Corazon de la Isla).
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transported to the laboratory. A fraction of 5 g from
each sample was used for fungal isolation while another
fraction was oven-dried (105°C) overnight to determine
the moisture content.

Fungal isolation and identification

Each soil sample was processed by the soil washing
method according to Parkinson and Williams (1961). A
total of 100 soil particles from each sample was used,
placed on plates containing cornmeal agar medium
supplemented with 0.05% streptomycin sulfate and
0.025% chloramphenicol at rate of five particles per
plate (a total of 20 plates by sample) and incubated at
25°C for 10 days (Eliades et al. 2008). Daily observations
of the plates were performed under the microscope and
arepresentative of each taxon registered on the particles
at each sampling date was isolated. Stock cultures were
keptat4°Con 2% (w v'!) agar-malt extract (MEA) slants,
lyophilised and deposited in the culture collection of
“Instituto Spegazzini”, UNLP, La Plata, Argentina (LPSC).
For morphological identification, MEA slide cultures
of each isolate were prepared and mounted with
lactophenol cotton blue to observe the structures
differentiated by hyaline fungi. Original taxonomic
papers based on cultural and morphological features
and compendia (Ellis 1971; Carmichael et al. 1980;
Domsch et al. 1993; Cabello and Arambarri 2002) were
used to identify sporulating fungi.

Statistical analyses

The community structure of soil fungi was analysed by
(i) frequency (%): number of particles bearing a specific
fungus / total number of particles analysed x 100
(Godeas 1983); (ii) species richness (S); (iii) Evenness
(E); and (iv) Shannon’s diversity index (H'). H'= ¥p, In
p, where p, is the relative abundance of the i species
compared to the abundance of all identified species in
a sample (Magurran 1988; Cabello & Arambarri 2002).

A two-way ANOVA was performed to analyse the effects
of forest management type and period of time since
intervention (between-subject effects) and of season
(i.e., sampling dates, as the within-subject effect) on S, E
and H’. Prior to analysis, normality and homoscedasticity
of the data were tested in order to confirm that they
fulfilled the assumptions required for ANOVA.

Principal Component Analysis (PCA; Digby & Kempton
1987) was performed with the frequency data of all
species using the Multivariate Statistical Package MVSP
3.1. (Kovach 1999). Wilks’ Lambda test was applied
to verify if the sample units in the PCA analysis were
mainly separated in the two axes by the sampling time,
years after intervention or forest-management type.

Results

Total soil mycobiota

The total mycobiota recovered from all 80 soil samples
collected was represented by 70 taxa whose higher
frequency at each site and sampling time is shown in
Tables 1-3. A representative isolate obtained from the
particles at each sampling date was obtained. Of the
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fungi identified, most were in the Ascomycota phylum
although some representatives of Mucoromycota were
also found.

The S, ] and H’ values of the soil mycobiota are shown in
Appendices 1-3. Sampling time was the only factor that
generated significant differences in the values of S and
H’ (Table 4). The H’ is a parameter that includes S so a
Fisher’s least-significant-difference test was performed
using H’ data for the samples corresponding to each
forest management situation at the three sampling times
(Fig. 2). There were no significant differences between
dates in the harvested forest (P<0.01), although in May
H’ indices were significantly higher than at the other
two sampling dates for both undisturbed forests and
stockpile areas (Fig. 2).

The PCA performed with the frequencies of all fungal
species showed that the first two axes accounted for
50.7% of the total variance explained (Fig. 3). A Wilks’
Lambda test was highly significant with sampling time
(Wilk’sLambda: 0.003,F:180.3,P<0.001),which grouped
soil samples according to seasonality and not significant
between years after intervention (Wilk’'s Lambda:
0.957,F:0.21, P>0.001) and types of forest management
(Wilk’s Lambda: 0.957, F: 0.85, P>0.001). September
2010 samples were mainly represented by Humicola
fuscoatra, Penicillium frequentans, Trichoderma koningii
and T polysporum, while the November 2009 samples
included Beauveria brongniarti and Mortierella vinacea,
and the May 2010 samples included Aspergillus niger
and A. terreus.

Soil mycobiota at undisturbed sites

The 12 most frequently obtained species found in
the nine control forests at each of the three sampling
dates are shown in Figure 4. Among these ones,
Mortierella vinacea, Mucor subtilissimus, Humicolopsis
cephalosporioides,  Penicillium  frequentans  and
Trichoderma polysporum occurred most frequently in
November 2009 (late-spring). Absidia cylindrospora,
A. spinosa, Paecilomyces sp., P. frequentans, Penicillium
nigricans and T polysporum characterised the soil
samples corresponding to May 2010 (autumn), while
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Humicola fuscoatra and Humicolopsis cephalosporioides
exhibited a high frequency in September 2010 (early-
spring), together with A. cylindrospora, Mucor hiemalis,
and T polysporum. In these undisturbed sites, the
species richness was around 4 and 13, the evenness was
between 0.40-0.63 and the species diversity was 0.88-
2.13.

Effect of forest-management type and time since
intervention

Even though the sampling time was the variable that
explained the separation of the units according to their
composition, some species were present in recently
exploited sites (Acremonium cerealis, Melanospora fallax
and Mortierella ramosa) and others in ones intervened
50 years ago (Cladosporium herbarum, Dactylium
dendroides and Geomyces pannorum).

Averaged across all three sampling dates, H.
cephalosporioides and T polysporum exhibited the
highest frequencies, with the former being more
abundant in sites with the shortest periods of time
since intervention (1 and 5-10 years) and T. polysporum
being more abundant in soils at sites after 50 years of
intervention. However, there were no differences in S,
] and H’ in soils of different forest-management type or
time since intervention.

Discussion

Inour project, we analysed and compared the community
structure of soil fungi under forests subjected to
different management practices and periods of time
since the intervention. However, species richness and
diversity of soil mycobiota associated with N. pumilio
forests estimated here did not confirm the hypothesis
that forest management decreases the mycobiota
composition. Silviculture practices can be a potential
source of stress that influences both the ecophysiology
of forests and the associated soil microbiota. It is well-
known that forest management practices generate
specific microclimate conditions due to changes in the
humidity and temperature in the soil and canopy as well
as in sunlight availability (Aussenac 2000).

TABLE 4. Results of repeated-measures ANOVA on specific richness (S), equitability (]J) and
diversity index (H’) indicating the effect of sampling time (S), forest management (FM)

and years from intervention (YI).

S ] H’
Source of variation d.f. F P value F P value F P value
FM 2 1.231 0.315 0.014 0.986 0.492 0.620
YI 2 0.625 0.547 0.589 0.565 0.671 0.523
FM x YI 4 0.937 0.465 0.908 0.480 1.952 0.145
S 2 20.258 0.000 2.030 0.146 13.185 0.000
SxFM 4 0.243 0.912 1.971 0.120 1.179 0.336
SxYI 4 0.832 0.513 0.059 0.993 0.451 0.771
SxFMx YI 8 0.490 0.855 0.491 0.855 0.520 0.833
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To date, there is no information about the impact of
seasonal changes on the soil microfungi diversity in
forests of N. pumilio in Tierra del Fuego subjected to
different management practices and consequently
to different degrees of tree cover. However, this
information can be of key relevance for determining
the forest productivity status and therefore contribute
to the development of new sustainable management
strategies (Martinez Pastur et al. 2009).

A.
3
* % *
2
H’ W November 2009
OMay 2010
1
@ September 2010
0
1. 5to 10 50
Time from intervention (years)
B.
3
* * *
2
H B November 2009
OMay 2010
1
@ September 2010
0
1 5to 10 50
Time from intervention (years)
C.
3
2
H W November 2009
0O May 2010
1
@ September 2010
0

1 5to 10 50

Time from intervention (years)

FIGURE 2: H’ in control forest (A), stockpile areas (B) and
harvested forest (C) at the three periods of time
since intervention in November 2009 (Nov), May
2010 (May) and September 2010 (Sept). Values
are means that correspond to three forest sites
(replicates). The asterisk (*) denotes significant
differences between sampling dates for each
period of time since the intervention according
to ANOVA and Fisher’s LSD test (P < 0.05).
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Higher S and/or H’ were found in undisturbed forests
and stockpile areas in autumn (May 2010) compared to
those from the other two seasons we analysed. Similarly,
differences in the diversity of microfungi associated
with seasonality and temperature conditions in cold
environments were reported by Coleine et al. (2015)
and Rodolfi et al. (2015). VoriSkova et al. (2014) also
found that the soil fungal community under a temperate
oak forest was affected by seasonality, with the highest
number of genera found in autumn. The two processes
that probably contributed most to those differences were
litter decomposition and allocation of photosynthates.
Since temperature can also affect nutrient recycling
in N. pumilio forests and consequently influence soil
biological activity (including microfungi and their
enzymes), further analysis is necessary to demonstrate
whether these differences in the diversity of microfungi
are in fact related to the amount and availability of
specific nutrients. Preliminary studies on the in-vitro
conditions of H. cephalosporioides, a fungus with a
high frequency in forest soils of N. pumilio in Tierra del
Fuego, revealed that its enzyme activity is affected by
the temperature of incubation (Eliades et al. 2015).

All study sites were exposed to the same stressful
conditions that prevailed due to the seasonal presence
of snow (characteristic of the sub-Antarctic climate)
but this did not seem to have affected fungal diversity
in the harvested forest with shelter wood. One possible
reason could be the existence of a mosaic of vegetation
types and floristic composition in disturbed ecosystems
that minimised the regional effect of climate. Bradley
et al. (2001) compared the chemical and microbial
properties of the forest floor between shelter wood,
adjacent old-growth and clear-cut plots in the montane
coastal western hemlock of British Columbia (Canada).
These authors found that forest floor can develop under
shelter wood plots with atypical properties of either
clear-cut or old-growth plots. The absence of differences
in the community of soil microfungi associated with
different forest management practices and periods of
time since intervention observed in the present study
could be due to mechanisms of ecological compensation
that mitigated the impact of the intervention. The
presence of new substrates (such as wood particles
and other organic remains), and of microhabitats
equivalent to the original ones as a result of cutting and
delimbing of trees, may contribute to the restoration of
appropriate conditions for soil fungi to thrive, leading
to the maintenance of a similar fungal community.
Yet, this also depends on the ability of each fungal
species to survive in the modified environment. Soil
fungi are an ecological group composed of generalist
representatives, as in the case of most Aspergillus and
Penicillium, which are able to survive in both natural
and man-made environments due to their ability to use
a wide variety of carbon sources for growth (Kowalczyk
et al. 2014). Ecological compensation is a mechanism
that allows these fungi to survive different kinds of
disturbances and therefore these organisms might play
an important role in the sustainable development of a
region (Wang et al. 2007). They can establisher new
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FIGURE 4

PCA of soil mycobiota data at three collection dates (November 2009, circles; May 2010, inverted triangles;
September 2010, squares) with site codes above the symbols. The main species vectors are indicated with
arrows. Fungal names are abbreviated. Red symbols indicate control samples. The code of each site is formed
by: period of time (in years) since intervention (1, 5-10 or 50), followed by type of forest management
(control forest, CF; stockpiled area, SA; harvest forest, HF) and season sampling (November 2009, N; May
2010, M; September 2010, S). The abbreviations of the taxa names are: Abs coe, Absidia coerulea; Abs cyl,
Absidia cylindrospora; Asp nig, Aspergillus niger; Asp ter, Aspergillus terreus; Bea bro, Beauveria brongniartii;
Hum fus, Humicola fuscoatra; Hum cep, Humicolopsis cephalosporioides; Lev, Yeast sp.1; Mor hum, Mortierella
humilis; Mor par, Mortierella parvispora; Mor vio, Mortierella vinacea; Muc hie, Mucor hiemalis; Muc sub,
Mucor subtilissimus; Pen fre, Penicillium frequentans; Pen pur, Penicillium purpurascens; Pen tho, Penicillium
thomii; Pip sp., Piptocephalis sp.; Tri kon, Trichoderma koningii; Tri pol, Trichoderma polysporum; Ulo bot,
Ulocladium botrytis.
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biotic interactions that often result in changes to the
environment and activate inducible metabolic pathways
that allow their growth under stressful conditions such
as when nutrient resources are scarce (Troncozo et al.
2015). This includes phenotypic plasticity according
to available organic substrates and synthesis of lytic
enzymes involved in soil formation, which have adaptive
and ecological significance (Franco etal. 2018). Lin et al.
(2016) reported that the soil mycobiota of a Taiwanese
Cryptomeria japonica forest regained system stability
and recovered from tree thinning disturbance in a
relatively short period of time. Forest management
practices, including harvesting and forest conversion,
could affect the soil microbial community in montane
forest (Chang et al. 2017). Therefore, additional studies
including other recently disturbed sites of N. pumilio
forests in Tierra del Fuego are needed.

Conclusions

We showed thatthe diversity of soil mycobiotaassociated
with N. pumilio forests was not affected by silviculture
practices and time since intervention. Although 70
fungal taxa were recovered from these soils, a change
in S and/or H’" was only found for undisturbed forests
and stockpile areas in autumn compared to those from
seasons more favourable to plant growth. Therefore,
our results indicate that forest harvesting per se does
not affect the diversity of soil mycobiota in N. pumilio
forests in Tierra del Fuego, since there were no changes
in any of the structural parameters analysed associated
with the harvested forest with sheltering wood cutting.
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Appendix 1. Richness (S), Evenness (J) and Shannon Weiner index (H’) from control forest (CF), stockpiled area
(SA) and harvested forest (HF) of the studied sites in November 2009.

CF SA HF

Site* S ] 150 S ] H S ] v

LP 1 6 054 141 12 0.41 1.47 12 0.48 1.72
LC1 7 047 132 6 0.24 0.64 7 0.54 1.51
EW 1 9 047 151 9 0.35 1.11 6 0.62 1.62
EW 5-10 8 031 094 10 0.32 1.07 6 0.43 1.11
EUa 5-10 9 050 161 5 0.34 0.80 8 0.42 1.27
Eub 5-10 4 055  1.11 9 0.40 1.29 8 0.56 1.70
LP 50 8 052 156 9 0.52 1.67 10 0.36 1.19
EU 50 8 057 171 4 0.34 0.69 2 0.63 0.63
RCI 50 8 037 113 10 0.44 1.47 7 0.38 1.08

*LP 1, Lenga Patagonia Ranch; LC 1, Los Cerros Ranch; EW 1, Ewan River; EW 5-10, Ewan River; EUa 5-10, Ushuaia
Ranch a; EUb 5-10, Ushuaia Ranch b; EU 50, Ushuaia Ranch; LP 50, Lenga Patagonia Ranch; RCI 50, Reserva Corazén
de la Isla. For more information to see the section “Methods”.

Appendix 2. Richness (S), Evenness (]) and Shannon Weiner index (H’) from control forest (CF), stockpiled area
(SA) and harvested forest (HF) of the studied sites in May 2010.

CF SA HF
Site* S ] H S ] H S ] H
LP1 8 0.47 1.42 13 0.56 2.09 13 0.52 1.94
LC1 10 0.63 2.11 10 0.53 1.77 11 0.52 1.80
EW 1 12 0.56 2.04 14 0.57 2.17 7 0.46 1.31
EW 5-10 11 0.53 1.84 14 0.57 2.19 5 0.51 1.20
Eua 5-10 - - - 14 0.51 1.95 12 0.61 2.19
Eub 5-10 12 0.55 1.98 10 0.60 2.02 8 0.49 1.47
LP 50 10 0.49 1.64 10 0.50 1.68 8 0.59 1.79
EU 50 11 0.57 1.98 13 0.61 2.28 10 0.40 1.35
RCI 50 13 0.57 2.13 7 0.57 1.60 12 0.44 1.59

*LP 1, Lenga Patagonia Ranch; LC 1, Los Cerros Ranch; EW 1, Ewan River; EW 5-10, Ewan River; EUa 5-10, Ushuaia
Ranch a; EUb 5-10, Ushuaia Ranch b; EU 50, Ushuaia Ranch; LP 50, Lenga Patagonia Ranch; RCI 50, Reserva Corazén
de la Isla. For more information to see the section “Methods”.
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Appendix 3. Richness (S), Evenness (]) and Shannon Weiner index (H’) from control forest (CF), stockpiled area

(SA) and harvested forest (HF) of the studied sites in September 2010.

CF SA HF
Site* S ] H S ] H S ] H
LP1 5 0.40 0.94 7 0.52 1.47 7 043 121
LC1 5 0.50 1.17 7 0.55 1.55 8 061 183
EW 1 4 0.49 0.99 4 0.52 1.04 5 047  1.09
EW 5-10 4 044 088 7 0.43 1.20 4 044  0.88
Eua 5-10 6 0.48 1.24 6 0.43 1.13 2 054 195
Eub 5-10 8 0.53 1.59 8 0.60 1.80 6 043 112
LP 50 7 0.45 1.28 6 0.51 1.32 1 0 0
EU 50 6 0.57 1.47 2 0.42 0.42 2 068  0.68
RCI 50 5 0.55 1.29 8 0.61 1.84 6 056 146

*LP 1, Lenga Patagonia Ranch; LC 1, Los Cerros Ranch; EW 1, Ewan River; EW 5-10, Ewan River; EUa 5-10, Ushuaia
Ranch a; EUb 5-10, Ushuaia Ranch b; EU 50, Ushuaia Ranch; LP 50, Lenga Patagonia Ranch; RCI 50, Reserva Corazén

de la Isla. For more information to see the section “Methods”.



