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Abstract

Background: Noise produced during machining of wood materials can be a source of harm to workers and an environmental 
hazard. Understanding the factors that contribute to this noise will aid the development of mitigation strategies. In this 
study, an artificial neural network (ANN) model was developed to model the effects of wood species, cutting width, number 
of blades, and cutting depth on noise emission in the machining process.

Methods: A custom application created with MATLAB codes was used for the development of the multilayer feed-forward 
ANN model. Model performance was evaluated by numerical indicators such as MAPE, RMSE, and R2.

Results:  The ANN model performed well with acceptable deviations. The MAPE, RMSE, and R2 values were 0.553%, 0.600, 
and 0.9824, respectively, in the testing phase. Furthermore, this study predicted the intermediate values not provided from 
the experimental study. The model predicted that lower noise emissions would occur with decreased cutting width and 
cutting depth.

Conclusions: ANNs are quite effective in predicting the noise emission. Practitioners relying on the ANN approach for 
investigating the effects of various factors on noise emission can save time and costs by reducing the number of experimental 
combinations studied to generate predictive models.

New Zealand Journal of Forestry Science

Özşahin and Singer New Zealand Journal of Forestry Science (2022) 52:11 
https://doi.org/10.33494/nzjfs522022x92x
E-ISSN: 1179-5395
published on-line: 12/04/2022

© The Author(s). 2022 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License  
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give  
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

 Research Article									           Open Access

designed and operated, otherwise, noise problems 
may arise. Noise is generally defined as an unwanted 
sound (Engin et al. 2019) and is a major occupational 
and environmental hazard. The continuous exposure of 
workers to high noise levels can cause detrimental health 
effects such as hearing loss, sleep disturbance, fatigue, 
and hypertension (Hong et al. 2013). According to the 
National Institute of Occupational Safety and Health, an 
estimated 14% of workers are exposed to noise higher 
than the permissible limit (85 dB(A)) (Lee et al. 2009; 
Ismaila & Odusote 2014).

Occupational exposure to noise is unavoidable in 
the wood processing industry; however, this exposure 
could be minimised by better understanding the factors 
affecting noise. The most important main factors 
influencing the noise level are wood properties and 
machining parameters. Therefore, it is important to 

Introduction
Wood is a naturally occurring material consisting 
of cellulose, hemicelluloses, lignin, extractives, and 
inorganic components (Uysal & Yorur 2013). It can be 
used in both a solid form or further processed into wood-
based composites (Sedleckỳ & Gašparík 2017). One of 
the most important wood-based composites is medium-
density fiberboard (MDF). MDF is made from wood 
fibers that are glued together with heat and pressure. 
The physical and mechanical properties and surface 
qualities of MDF panels are relatively standardised and 
uniform. These characteristics make the panels a suitable 
alternative to solid wood for industrial manufacturing of 
furniture (Fathollahzadeh et al. 2013).

The production of furniture and decoration elements 
requires a series of transformation processes. The 
machines used in these processes must be properly 
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evaluate subfactors related to both wood properties 
and machining parameters for the reduction of noise 
emission in the machining process (Owoyemi et al. 2017; 
Çota et al. 2019).

In recent years, several attempts have been made 
to examine the influences of various factors on noise 
emission in wood machining. Ratnasingam and Scholz 
(2008) stated that the use of smaller engines and 
breaking of fewer chips led to lower noise emission. 
Svoreň et al. (2010) reported that the circular saw blade 
with sigmoid compensating slots had the lowest noise 
levels in the range of (2-5) dB(A). Pinheiro et al. (2015) 
determined that an increase in the moisture content of 
wood led to a decrease in noise emission. Krilek et al. 
(2016) observed that the number of saw blade teeth had 
a significant effect on noise emission. This observation 
was also confirmed by Kvietková et al. (2015). Durcan 
and Burdurlu (2018) noted that decreasing the blade 
number led to higher noise emission, while Çota et al. 
(2019) reported that noise emission increased with 
increasing feed speed.

It is clear that plenty of values for factors have to 
be investigated to detect a change in noise emission. 
However, the measuring of the effect of each factor 
on noise emission is expensive, and conducting tests 
is also time-consuming. Therefore, it is important to 
find reliable and economic methods providing the 
desired results (McKenzie et al. 2003). Owing to the 
heterogeneous nature of wood, wood-related factors 
possess nonlinear changes. Hence, traditional linear 
models are inadequate in describing the characteristics 
of these factors. Ignoring the presence of nonlinearities 
leads to misleading results. Machine learning techniques 
are more appropriate for modeling and optimisation 
purposes. Artificial neural networks (ANNs), one of the 
most attractive branches in artificial intelligence, are 
able to deal with linear and nonlinear problems and 
learn complex cause-and-effect relationships among 
inputs and outputs. ANNs are good for tasks involving 
fuzzy or incomplete information. They can be faster, 
cheaper, and more adaptable than conventional methods 
(Ozsahin & Murat 2018).

The ANN approach has brought a new insight into 
the solution of many problems in wood science. This 
approach has been employed for analyzing moisture in 
wood (Avramidis & Wu 2007), prediction of fracture 
toughness (Samarasinghe et al. 2007), classification 
of veneer defects (Castellani & Rowlands 2008), wood 
recognition (Khalid et al. 2008), modeling of some 
properties of oriented strand board (Özşahin 2012; 
Ozsahin 2013), determination of optimum power 
consumption in wood machining (Tiryaki et al. 2016), 
prediction of formaldehyde emission (Akyüz et al. 
2017), and modeling of physical properties of heat-
treated wood (Ozsahin & Murat 2018). These studies 
have shown that the ANN approach produces highly 
successful results.

Consequently, the existing literature has a gap in 
the prediction of noise emission by the ANN approach. 
Therefore, the objectives of this study are to: 1) develop 
an ANN model for modeling the effects of wood species, 

cutting width, number of blades, and cutting depth on 
noise emission in the machining process; 2) to present 
a road map for the wood processing industry seeking to 
enhance worker health and safety; and 3) to fill the gap 
in the literature.

Methods

Dataset
The data used in this study were taken from Durcan and 
Burdurlu (2018). The experimental process conducted 
by the authors can be briefly explained as follows. 
Lombardy poplar (Populus nigra L.), Oriental beech 
(Fagus orientalis L.), and MDF were selected as materials 
for the experiments. In the planing of the samples, 
five different levels of cutting width (6, 12, 18, 25, and  
30 mm), three different levels of cutting depth (1, 2, and 
3 mm), and two different levels of number of blades  
(1 blade and 4 blades) were tested. The cutting speed 
was chosen as 26.7 m/s, and the feed rate was 5 m/min. 
The Extech HD 600 device (Extech Instruments, NH, 
USA) was used for the measurement of noise emission. 
A total of 1800 measurements were recorded with 20 
measurements (replications) for each combination 
of factors. More information about the experimental 
procedure can be found in Durcan and Burdurlu (2018).

Artificial neural network approach
The ANN is a computational model that is inspired by 
the human brain (Mia & Dhar 2016). The ANN approach 
offers many advantages over traditional statistical 
methods because it is capable of describing the 
relationship between input and output variables without 
any prior knowledge (Venkata Ramana et al. 2013; 
Shebani & Iwnicki 2018). ANNs can be used for data 
sorting, pattern recognition, optimisation, clustering, 
and simulation (Yadav & Chandel 2014).

The most widely used network is the multilayer 
perceptron (MLP). It consists of one input layer, t hidden 
layer(s), and one output layer (Drouillet et al. 2016). 
The input layer receives the data and transmits them to 
the hidden layer(s). The hidden layer(s) processes the 
information and sends the result to the output layer. The 
output layer provides the outputs of the network (Kara 
et al. 2016).

The MLP network comprises a number of neurons 
(nodes) organised in layers (Ghorbani et al. 2016). Each 
node is connected to other nodes by communication links 
(connections). Each connection has a weight (Özşahin 
2012). In order to obtain the net input, inputs are 
multiplied by weights and combined with the relevant 
bias. Outputs are calculated by applying a mathematical 
function to the net input. This process is summarised in 
Equations (1) and (2) (Ozsahin 2013).

					                     (1)

					                     (2)



where: xi is the input signal, wij is the weight between 
the ith node and the jth node, θj is the bias, netj is the 
net input of the jth node, f(.) is one of the activation 
functions, and yj is the output of the jth node.

Input nodes and output nodes represent inputs 
and outputs, respectively. However, hidden nodes 
vary depending on the complexity level of the handled 
problem (Beltramo et al. 2016). If too few hidden nodes 
are used, the network does not have enough ability 
to model complex relationships between inputs and 
outputs. On the other hand, if too many hidden nodes 
are used, overfitting problems may arise (Quintana et al. 
2011).

Neural networks must be trained with known input-
output data. During the training process, the values 
of weights and biases are changed to obtain the best 
prediction results (Haghdadi et al. 2013). When the error 
reaches a determined value or the specified number of 
iterations is reached, the training of ANNs is finished 
(Ertunc et al. 2013). If the model responds correctly 
to input values that are not employed in training, the 
weights and biases of the trained network are saved. 
These weights and biases can be used to predict outputs 
for new input vectors (Yildirim et al. 2011).

Artificial neural network analysis
In this study, the noise emission values were predicted 
with the ANN approach. The wood species, cutting width, 
number of blades, and cutting depth were considered as 
inputs, while the noise emission was the output of the 
ANN model. We ran the ANN model with a range of values 
for the given parameters. The other process parameters, 
environmental conditions, and wood-related parameters 
were held constant. The ANN modeling steps were 
performed using MATLAB (MathWorks, MA, USA). Figure 
1 shows the steps of this study.

The data were grouped randomly and homogeneously 
in the form of training and testing data. 60 data points 
(66.67% of total data) were used for the training process 
and 30 data points (33.33% of total data) were used to 
test the validity of the ANN model. Different data groups 
were constituted from the data. Each data group was 
tested to detect suitable data sets. The subsets used in 
the ANN analysis are shown in Table 1.

In modeling, a feed-forward backpropagation neural 
network was used. The activation functions were the 
hyperbolic tangent sigmoid function (tansig) and the 
linear transfer function (purelin). The Levenberg-
Marquardt algorithm (trainlm) was employed for 
training, and the gradient descent with a momentum 
backpropagation algorithm (traingdm) was considered 
as the learning rule. The training progress was monitored 
through the mean square error (MSE) [Equation (3)]:

					                     (3)

where, ti refers to the actual value, tdi refers to 
the model output, and N refers to the number of 
measurements.

Normalising the data before the training and testing 
of ANNs is recommended to equalise the significance of 
variables (Canakci et al. 2015). As the tansig function 
was used as the activation function, the experimental 
data were normalised between −1 and 1. The mapping 
of each variable to a value between −1 and 1 was carried 
out using Equation (4). The outputs of the ANN model 
were converted into the real values by using a reverse 
normalising process.

					                     (4)
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TABLE 1: Description of the study sites

FIGURE 1: The steps of this study based on the ANN 
approach.
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where, Xnorm is the normalised value, X is the real value, 
and Xmin and Xmax are the minimum and maximum values 
of X, respectively.

The performance of ANN-based models is affected 
by many factors such as activation functions, learning 
rule, momentum, and the number of nodes in the 
hidden layer(s) (Mohanraj et al. 2012). Therefore, 
different network parameters and configurations 
were tried until the difference between the measured 
and predicted values was minimised. The established 
models were checked by employing the testing data. As 
a result, the ANN model yielding the nearest values to 
the experimental results was run for predictions. The 
optimum values of weights and biases of the ANN model 
are shown in Table 2.

Figure 2 shows the developed model. The input layer 
of the ANN model consists of four nodes representing 
wood species, cutting width, number of blades, and 
cutting depth. The output node represents the output 
parameter called noise emission. ANNs should be not too 
large to prevent the loss of generalisation. The attention 
should be paid to the number of nodes in each hidden 
layer (Muralitharan et al. 2018). In this study, the ANN 
model was designed on the trial-and-error basis. The 
best performance was obtained with 3-3 hidden nodes. 
The proposed model is mathematically logical and 
defined because the number of the connections is lower 
than the number of data points available for training.

The performance of prediction models can be 
evaluated by using various statistical measures. In this 
study, the mean absolute percentage error (MAPE), the 
root mean square error (RMSE), and the coefficient of 
determination (R2) were used to compare the established 
models. The MAPE, RMSE, and R2 values were calculated 
by using the following equations:

					                      (5)

					                      (6)

					                        (7)

where    is the average of predicted values.
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Hidden layer 1 Hidden layer 2 Output layer

Neuron 1 Neuron 2 Neuron 3 Bias 1 Neuron 1 Neuron 2 Neuron 3 Bias 2 Neuron 1 Bias 3

0.01109 -3.27308 -0.04546 -0.51600 2.13712 3.20086 -8.24474 -6.65524 0.26429 -2.53834

-0.01309 -1.92293 -0.01902 0.03776 -12.69931 -11.60765 0.00014 12.65604 0.48143 -

0.00226 0.08328 0.03226 5.17537 -14.63688 0.50336 0.11658 -3.50894 5.29178 -

-0.00803 -3.63630 -4.84149 - - - - - - -

FIGURE 2: The proposed network architecture.

TABLE 2: The optimum values of weights and biases.



Results and Discussion
In this study, a feed-forward backpropagation neural 
network was designed for the prediction of noise 
emission. The network was trained and tested using 
90 data points. As a result of the modeling process, the 
4:3:3:1 architecture was selected to make predictions. 
The actual and predicted values and their percentage 
errors are given in Table 1.

The MAPE, RMSE, and R2 values were employed as the 
main criteria to evaluate the performance of the ANN 
model. Table 3 shows the MAPE, RMSE, and R2 statistics 
calculated for the ANN model.

According to Lewis (1982), typical MAPE values for 
performance evaluation are categorised as follows: 
MAPE ≤ 10% – high, 10% ≤ MAPE ≤ 20% – good, 20% ≤ 
MAPE ≤ 50% – reasonable, and MAPE ≥ 50% – inaccurate. 
In this study, the MAPE values were calculated as 0.46% 
for the training phase and 0.55% for the testing phase. 
As seen from the results, the ANN model has an excellent 
performance in the prediction of noise emission.

RMSE measures the deviation between actual and 
predicted values. The lower value of RMSE suggests 
better model performance (Chen & Chau 2016). In this 
study, the RMSE values were calculated as 0.521 dB(A) 
and 0.600 dB(A) for the training and testing phases, 
respectively. It can be thus said that the prediction 
of noise emission is successful in terms of the RMSE 
criterion.

R2 is an indicator of the strength of the relationship 
between measured and predicted values. If the R2 value of 

a model is above 0.90, the model has a high performance 
(Özşahin 2012). In this study, the regression analysis 
was carried out to calculate the R2 values of the proposed 
model. The R2 values were calculated as 0.98 and 0.98 for 
the training and testing phases, respectively. The values 
of the R2 criterion show that the established network 
has the ability to explain at least 98% of the observed 
variation in  noise emission.

The comparisons between the measured and 
predicted values are presented in Figure 3. The predicted 
values showed a close match with the measured values. 
Therefore, it is concluded that the ANN model can be 
used as an appropriate tool to predict noise emission.

The investigation of the influence of each factor on 
noise emission requires a large number of experimental 
studies. However, extra experiments are time-consuming 
and give rise to an increase in costs. The combinations 
obtained by ANNs may be used to improve experimental 
processes. In this respect, the use of the ANN approach 
is important because it is capable of predicting the 
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Phase Performance criterion

MAPE RMSE R2

Training 0.461 0.521 0.9811 (y = 0.9811x + 1.6467)

Testing 0.553 0.600 0.9824 (y = 0.9792x + 1.7365)

TABLE 3: Performance evaluation criteria for the noise 
emission prediction.

FIGURE 3: The comparison of the measured and predicted values: (a) training; and (b) testing.

(a)

(b)



untested experimental results (Akyüz et al. 2017). In this 
study, wood species and number of blades were fixed, 
and cutting width and cutting depth were changed. The 
intermediate values not obtained from the experimental 
study were determined by the ANN model for different 
cutting widths and cutting depths. The surface plots 
showing the changes in noise emission are given in 
Figure 4. As seen in this figure, noise emission decreases 

with decreased cutting width and cutting depth. The 
optimisation can be performed via an analysis of 
responses of the model. 

Each wood type possesses a different structure. 
This differentiates the changes in noise emissions. As 
can be seen in Figure 4, the structural heterogeneities 
of the poplar and beech woods give rise to nonuniform 
changes in noise emissions. The MDF material has a 
more homogeneous structure than the others. Hence, 
the changes in the noise levels emitted during the cutting 
of the MDF boards show homogeneous-like behaviour. 
The modeling results provided a better understanding 
of the effect of wood structure on machining noise. The 
improper setting of machining parameters leads to high 
noise levels. Revealing the mutual relations of different 
factors is very important for obtaining the best results. 
Because the developed model operates with an average 
error of 0.55%, the results are acceptable and guiding. 
By taking into account interval values, the ANN model 
can allow earlier detection of noise levels and help to 
control the noise.

It has been reported that approximately 16% of 
adult-onset hearing loss is caused by workplace noise 
(Thepaksorn et al. 2019) and the wood processing 
industry is one of the noisiest industries. In order to 
reduce noise emissions, processing conditions and 
workplace-specific factors must be properly set via 
scientific approaches. It is clear that each change in 
noise emission will affect workers. Loud noise can cause 
workplace accidents and injuries. Hence, preventive 
measures must be applied to reduce the severity of 
high noise. Some important control strategies are as 
follows: changing the loudest technological processes 
and machines, performing routine maintenance on 
machinery and equipment, preserving the sharpness 
of blades, ensuring the balance of rotating parts, 
installing isolation dampers, utilising helicoidal gears, 
clamping of parts or panels, using flexible connections, 
ensuring pressure tightness and homogeneity, and 
using acoustic silencers and sound insulating control 
cabins. Furthermore, effective hearing loss prevention 
programs that comprise exposure assessments, noise 
controls, regular audiometric monitoring, usage of 
hearing protectors for exposure >85 dB(A), worker 
training, and good record keeping are required to reduce 
adverse results.

The modeling results show that there is a good 
agreement between the actual and predicted values. 
Based on the results of this study, it can be said that 
the effects of various factors on noise emission can be 
predicted by ANNs without the need for experimental 
studies that require much time and high costs. In further 
research, different variables can be used to predict noise 
emission.

Conclusions
The use of the ANN approach for modeling the effects 
of wood species, cutting width, number of blades, 
and cutting depth on noise emission in the machining 
process has been studied. The main results obtained 
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FIGURE 4: Predictive changes in noise emission for 
different cutting widths and cutting depths.



from this study are summarised below.
1.	 The values obtained with the ANN model are very 

close to the measured values.

2.	 The ANN model provides very satisfactory results 
with acceptable deviations. The MAPE, RMSE, 
and R2 values are 0.55%, 0.60 dB(A), and 0.98, 
respectively, in the testing phase. These values 
demonstrate that the developed model can provide 
accurate, fast, and acceptable results.

3.	 In the predictive examples, it is seen that noise 
emission increases with increased cutting width 
and cutting depth. The usage of the ANN approach 
would be useful for the wood processing industry 
in obtaining the emission values of the noise which 
creates a potential threat for worker health.

4.	 ANNs are quite effective in predicting the noise 
emission. This capability to prediction and faster 
decision-making help the wood processing industry 
to get precautions and achieve better results. Hence, 
the ANN model can reduce the experimental time 
and costs.
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