Microsoft Word - 11325 NSB Rawani 2023.03.16.docx Received: 04 Aug 2022. Received in revised form: 17 Sep 2022. Accepted: 06 Mar 2023. Published online: 16 Mar 2023. From Volume 13, Issue 1, 2021, Notulae Scientia Biologicae journal uses article numbers in place of the traditional method of continuous pagination through the volume. The journal will continue to appear quarterly, as before, with four annual numbers. SHST Horticulture and ForestryHorticulture and ForestryHorticulture and ForestryHorticulture and Forestry Society of TransylvaniaSociety of TransylvaniaSociety of TransylvaniaSociety of Transylvania Rawani A (2023) Notulae Scientia BiologicaeNotulae Scientia BiologicaeNotulae Scientia BiologicaeNotulae Scientia Biologicae Volume 15, Issue 1, Article number 11325 DOI:10.15835/nsb15111325 ReReReReviewviewviewview ArticleArticleArticleArticle.... NSBNSBNSBNSB Notulae Scientia Notulae Scientia Notulae Scientia Notulae Scientia BiologicaeBiologicaeBiologicaeBiologicae Potential biological control agents for the control of vector Potential biological control agents for the control of vector Potential biological control agents for the control of vector Potential biological control agents for the control of vector mosquitoes: A reviewmosquitoes: A reviewmosquitoes: A reviewmosquitoes: A review Anjali RAWANI University of Gour Banga, Malda, Department of Zoology, Laboratory of Parasitology, Vector Biology, and Nanotechnology, West Bengal, India; micanjali@gmail.com AbstractAbstractAbstractAbstract Mosquitoes are a major cause of lethal vector-borne diseases like dengue, malaria, filariasis, chikungunya, and Japanese encephalitis, among other diseases. In a developing country like India, mosquito-borne diseases are significant threats to familiar people as in certain places, there remains low sanitation. Larval and pupal life stages of mosquitoes are mostly confined to tropical and temperate waterbodies and often form a significant proportion of biomass waterbodies. Due to rebound vectorial capacity, resistance to chemical insecticides, and harmful environmental effects, the vector control program has shifted to using biological control agents. These methods are target-specific, eco-friendly, cost-effective, and can be easily deployed. So, the present review is focused on collating and updating the information on the use of aquatic predators, bacterial strains such as Bacillus sp. and actinobacterial, algae, and fungi, which are widely used for control of adult mosquitoes in their variety of natural habitats. This review also covers the predation of larvivorous fish and botanical insecticides. Keywords:Keywords:Keywords:Keywords: aquatic predators; biological control; botanical pesticides; larvivorous fishes; microbial agents; vector mosquitoes IntroductionIntroductionIntroductionIntroduction Mosquitoes are medically important insects, not only as nuisance biters, but also act as a vector of some harmful pathogens causing dreadful diseases of humans like malaria, dengue, yellow fever, chikungunya, Zika, and Japanese encephalitis among other diseases (Chandra et al., 2008a). In 124 tropical and subtropical countries, around 55% of the population is at risk of these diseases (Beatty et al., 2007). Malaria is transmitted by ten anopheline species in India of which six are of primary importance. The primary vectors in rural areas are Anopheles culicifacies and in urban areas is Anopheles stephensi. Malaria affects 36% of the world’s population, i.e., 0.241 billion people in 107 countries (World malaria report, 2021). According to WHO (1981), in the South East Asian region, 2.5 million (85.7%) people are at risk of malaria. India alone contributes about 70% of the total cases among the 2.5 million reported cases in South East Asia (Kondrachine, 1992). Approximately 102 million cases of filariasis are primarily transmitted by Culex quinquefasciatus. Nearly 1,100 million people are living in areas endemic to Lymphatic filariasis were in most cases either have patent microfilaraeimeia or chronic filarial disease (Michael et al., 1996). Aedes aegypti is responsible for dengue fever and yellow fever in https://www.notulaebiologicae.ro/index.php/nsb/index Rawani A (2023). Not Sci Biol 15(1):11325 2 India (WHO, 2017). Dengue infection is endemic in over 100 countries worldwide and each year it causes nearly 100 million cases of dengue fever, 500000 cases of dengue haemorrhagic fever and 24,000 deaths (Gibbons and Vaughn, 2002; Guha-Sapir and Schimmer, 2005). The World Health Organization embrace vector mosquito control as the only measures to prevent or control such diseases. Although interest in biological control of mosquitoes agents was large at the beginning of the 20th century, it is stopped since discovery of the insecticidal properties of the DDT in 1939. But this insecticide has the deleterious effects for health and environment, so alternatives to chemical insecticide become necessary. Currently, the most important measures to control these diseases are mosquito control and personal protection from mosquito bites. Vector control strategies mainly include the use of chemical insecticides, plant-based insecticides, and biological control agents (Poopathi and Tyagi, 2006). In the past several decades, a number of chemical insecticides have been effectively used to control mosquitoes. Constant use of man -made insecticides for mosquito control disrupts natural biological control systems and lead to re-emergence of mosquito populations. It also resulted in the development of resistance in target organisms, harmful effects on non-target organisms and human health problems and subsequently this initiated a search for alternative control measures (Das et al., 2007). These problems have prompted researchers to look for alternative vector control agents with high efficacy and low or no adverse effects on environment and human health. The development of new strategies includes natural insecticides which is an important tool to counter the evolution of resistance among the target organisms without affecting the non-target organisms (Cetin and Yanikoglu, 2006). Besides the natural insecticides, biocontrol agents are also given importance in order to combat the population of mosquito as these are target specific, nontoxic to environment, find easy application in the field, cost effective, lack infectivity and pathogenicity in mammals including man and has little and no evidence of resistance in target mosquito species. The use of biological control agents such as predatory fish, bacteria, algae, fungus and aquatic insects had shown promising results to control mosquito populations (Murugesan et al., 2009). The present review, work, is the assemblage of a wide range of biological control agents along with their updated information. The objective of the present review is to compile the all-biological control agents which have been reported so far for the control of vector mosquitoes. Aquatic insects and Aquatic insects and Aquatic insects and Aquatic insects and copepodscopepodscopepodscopepods Mosquito's life cycle includes stages: egg, larva, pupa, and adult. The first three stages are aquatic, i.e., confined to water bodies provided a high chance for predation to aquatic insects and thus helped in the mosquito control program. Aquatic insects mainly belong to orders such as Coleoptera, Diptera, Hemiptera, and Odonata and are keen to prey upon mosquito larvae. Many of these predators may be shows polyphagous habits, which means they are feeding on a broad range of prey species (generalist predator); some are oligophagous, having a restricted range of prey; or monophagous, having a minimal range of prey; these are also known as specialist predators. Generally, mosquito larvae feeders belong to the polyphagous type (Collins and Washino, 1985). These predators also predate the prey in various ways depending on their mouthparts. Some predators of order Odonata have chewing mouthparts, so they eat their prey. However, predators like beetle larvae and Hemiptera, having a sucking mouth part, suck the prey's body fluid (hemolymph). So, in general, mosquito larvae and pupae are predated by almost all aquatic insect belongs to aquatic Coleoptera (especially Dytiscidae), Hemiptera (especially notonectids), and Odonata, have been observed to consume mosquito larvae as a part of their natural food habits (Peckarsky, 1980). The backswimmer, Notonecta undulata (Hemiptera, Notonectidae), has been shown to prey on the second instar of mosquito larvae (Ellis & Borden, 1970). Besides the wide range of aquatic predators from the Phylum Arthropoda (mainly belonging to orders such as Coleoptera, Diptera, Hemiptera, and Odonata), cyclopoid copepods are a diverse group of small crustaceans and have often been used as effective biological control agents against different species of mosquitoes, such as Anopheles (Roa et al., 2002), Aedes (Riviere and Thirel, 1981) and Culex (Marten et al., 1984). Being microcrustaceans cyclopoid copepods (cyclopoids: a subclass of copepods) are not harmful to Rawani A (2023). Not Sci Biol 15(1):11325 3 human health (WHO, 2009) and have been used to control mosquito larvae of public health importance in artificial containers and under laboratory/field laboratory conditions in some countries like Australia, Thailand, Vietnam, Sri Lanka and to some extent in the Americas (Marten and Reid, 2007a, 2007b; Vu et al., 2005). However, predation might occur at any life stage; most research focused on mosquito larval and pupal stages as they are easy to locate. In a single habitat, all three stages are confined. So, field experiments with aquatic insects become easy to carry out. Predating immature stages of mosquitoes seems to be a significant component of mosquito mortality. The major aquatic predator and their prey mosquito species are listed in Tables 1 and 2. Table 1. Table 1. Table 1. Table 1. List of aquatic predaceous insects and their prey Name of predatorName of predatorName of predatorName of predator Order: Order: Order: Order: family of predatorfamily of predatorfamily of predatorfamily of predator Mosquito prey Mosquito prey Mosquito prey Mosquito prey (larval stage)(larval stage)(larval stage)(larval stage) ReferencesReferencesReferencesReferences Acilius sulcatus Coleoptera: Dytiscidae Cx. quinquefasciatus Chandra et al., 2008b Agabus erichsoni Coleoptera: Dytiscidae Ae. communis Nilsson and Soderstrom, 1988 Colymbetes paykulli Coleoptera: Dytiscidae Culex sp. Lundkvist et al., 2003 Dytiscus marginicolis Coleoptera: Dytiscidae Culiseta incidens Lee, 1967 Lestes congener Odonata: Lestidae Culiseta incidens Lee, 1967 Lacconectus punctipennis Coleoptera: Dytiscidae Ae. albopictus Sulaiman and Jeffery, 1986 Rhantus sikkimensis Coleoptera: Dytiscidae Cx. quinquefasciatus Aditya et al., 2006 Toxorhynchites splendens Diptera: Culicidae Cx. quinquefasciatus Aditya et al., 2006 Aeshna flavifrons Odonata: Aeshnidae Cx. quinquefasciatus Mandal et al., 2008 Coenagrion kashmirum Odonata: Coenagrionidae Cx. quinquefasciatus Mandal et al., 2008 Ischnura forcipata Odonata: Coenagrionidae Cx. quinquefasciatus Mandal et al., 2008 Rhinocypha ignipennis Odonata: Chlorocyphidae Cx. quinquefasciatus Mandal et al., 2008 Sympetrum durum Odonata: Libellulidae Cx. quinquefasciatus Mandal et al., 2008 Brachytron pratense Odonata: Aeshnidae An. subpictus Chatterjee et al., 2007 Crocothemis servilia Odonata: Libellulidae Ae. aegypti Sebastian et al., 1990 Enallagma civile Odonata: Coenagrionidae Cx. tarsalis Miura and Takahashi, 1988 Labellula sp. Odonata: Libellulidae Ae. aegypti Bay, 1974 Orthemis ferruginea Odonata: Libellulidae Ae. aegypti Sebastian et al., 1980 Orthemis ferruginea Odonata: Libellulidae An. pharoensis Cordoba and Lee, 1995 Tramea torosa Odonata: Libellulidae An. pharoensis Lee, 1967 Trithemis annulata Odonata: Libellulidae An. gambiae EL Rayah, 1975 Abedus indentatus Hemiptera: Belostomatidae Cx. annulirostris Washino, 1969 Anisops sp. Hemiptera: Notonectidae Cx. annulirostris Shaalan et al., 2007 Diplonychus sp. Hemiptera: Notonectidae Cx. annulirostris Shaalan et al., 2007 Diplonychus indicus Hemiptera: Belostomatidae Ae. aegypti Venkatesan and Sivaraman, 1984 Buenoa scimitar Hemiptera: Notonectidae Cx. quinquefasciatus Rodríguez-Castro et al., 2006 Diplonychus rusticus Heteroptera: Notonectidae Cx. quinquefasciatus Saha et al., 2007 Diplonychus annulatus Heteroptera: Notonectidae Cx. quinquefasciatus Saha et al., 2007 Anisops bouvieri Heteroptera: Notonectidae Cx. quinquefasciatus Saha et al., 2007 Rawani A (2023). Not Sci Biol 15(1):11325 4 Enithares indica Hemiptera: Notonectidae Anophiline, Culicine and Aedine Wattal et al., 1996 Notonecta sellata Hemiptera: Notonectidae Cx. pipiens Fischer et al., 2012 Notonecta hoffmani Hemiptera: Notonectidae Cx. pipiens Murdoch et al., 1984; Chesson, 1989 Anisops breddini Hemiptera: Notonectidae Ae. aegypti Weterings et al., 2014 Notonecta undulate Hemiptera: Notonectidae Ae. aegypti Quiroz-Martinez and Rodriguez-Castro, 2007 Anopheles barberi Diptera: Culicidae Cx. pipiens Petersen et al., 1969 Anopheles gambiae Diptera: Culicidae An. gambiae Koenraadt and Takken, 2003 Bezzia expolita Diptera: Ceratopogonidae Ae. aegypti Hribar and Mullen, 1991 Chaoborus crystallinus Diptera: Chaoboridae Ae. aegypti Bay, 1974 Ochthera chalybesceens Diptera: Ephydridae An. gambiae Minakawa et al., 2007 Toxorhynchites amboinensis Diptera: Culicidae Ae. aegypti Digma et al., 2019 Toxorhynchites brevipalpis Diptera: Culicidae Aedes sp. Gerberg and Visser, 1978 Toxorhynchites Brevipalpis conradti Diptera: Culicidae Ae. africanus Sempala, 1983 Toxorhynchites kaimosi Diptera: Culicidae Ae. africanus Sempala, 1983 Toxorhynchites rutilus rutilus Diptera: Culicidae Ae. aegypti Padgett and Focks, 1981; Focks et al., 1982 Toxorhynchites guadeloupensis Diptera: Culicidae Ae. aegypti Honório et al., 2007 Anisops sardea Hemiptera: Notonectidae Cx. quinquefasciatus Mondal et al., 2014 Lacotrephes griseus Heteroptera: Nepidae Cx. quinquefasciatus Ghosh and Chandra, 2011 Ranatra elongata Heteroptera: Nepidae Cx. quinquefasciatus Saha et al., 2020 Ranatra filiformis Heteroptera: Nepidae Cx. quinquefasciatus Saha et al., 2020 Lacotrephes griseus Heteroptera: Nepidae Cx. quinquefasciatus Saha et al., 2020 Table 2. Table 2. Table 2. Table 2. List of aquatic predaceous copepods (Subphylum: Crustacea; subclass: Copepoda) and their prey species Name of predatorName of predatorName of predatorName of predator Mosquito prey (larval stage)Mosquito prey (larval stage)Mosquito prey (larval stage)Mosquito prey (larval stage) ReferencesReferencesReferencesReferences Mesocyclops sp. Ae. aegypti Vu et al., 2012 Mesocyclops sp. Ae. aegypti Vu et al., 2005 Mesocyclops sp. Ae. aegypti Kay et al., 2002 Mesocyclops thermocyclopoides Ae. aegpyti Soto et al., 1999 Mesocyclops darwini Ae. aegpyti Marten et al., 1994a,b Cyclopoid An. aquasalis Roa et al., 2002 Mesocyclops leuckartipilosa Ae. aegypti Ae. polynesiensis Riviere and Thirel, 1981 Macrocyclops albidus Mesocyclops longisetus Aedes sp Anopheles sp. Marten et al., 1997 Mesocyclops australiensis Aedes sp. Brown et al., 1991 Mesocyclops leuckuarti Aedes Marten, 1984 Rawani A (2023). Not Sci Biol 15(1):11325 5 Mesocyclops scarassus Cyclops varicans Cyclops languides Anopheles sp. Ranathunge et al., 2019 Cyclops varicans Cyclops languides Cyclops vernalis Mesocyclops leukart Mesocyclops scarassus Ae. aegypti Ae. albopictus Udayanga et al., 2019 Macrocyclops albidus Mesocyclops leukarti Ae. koreicus Baldacchino et al., 2017 Cyclopoid sp. Aedes sp. Russell et al., 2021 Cyclopoid sp. Aedes japonicus Linus et al., 2019 Calanoid copepod Aedes sp. Cuthbert et al., 2018 FungiFungiFungiFungi The search for effective mosquito pathogens that can be used in mosquito control operations has been going on for several years. Both laboratory and field studies have been carried out on those fungi that have shown mosquito larvicide efficacy. Many species of fungi are currently being considered for use in the microbial control of mosquito larvae. Several fungus species of the genus Coelomomyces, Lagenidium, Metarhizium, Culicinomyces, Entomophthora, etc., have a potential biocidal effect against mosquito larvae (Scholte et al., 2004). However, some researchers have reported the mode of action of these fungal species, which depicts that they generally affect the cuticle and abdomen of the mosquito larvae (Butt et al., 2013). At first, the fungal species spores' adhesion occurs at the mosquito larvae's cuticle. Then the spore becomes generated, penetrating the cuticle where the growth and development occur in the hemocoel (Brian, 2009). The saprophytic feeding starts, fungal re-emergence, and ultimately the larva dies. They are also the possible routes of invasion by the fungus to cause the mortality of larvae (Seye et al., 2009). These are the main sites of infection when treated with fungal formulations (Bukhari et al., 2011). The attachment and growth of the fungus into the perispiracular valves of the siphon tube causes the blockage of air intake through respiration, thus leading to the death of the larvae (Butt et al., 2013). In Table 3, there is information about the essential fungi which have been reported so far in the mosquito control program. Table 3.Table 3.Table 3.Table 3. List of fungal species reported against mosquito larvae Fungal speciesFungal speciesFungal speciesFungal species Mosquito hostMosquito hostMosquito hostMosquito host ReferencesReferencesReferencesReferences Beauveria bassiana Culex sp. Aedes sp. Anopheles Sp. Clark et al., 1968 Beauveria tenella Aedes aegypti Aedes dorsalis Pinnock et al., 1973 Crypticola clavulifera Aedes aegypti Frances et al., 1989 Coelomomyces indicus Anopheles arabiensis Anopheles culicifacies Anopheles gambiae Anopheles indificus Service, 1977 Service, 1977 Muspratt, 1963 Whisler et al., 1999 Coelomomyces lairdi Anopheles punctulatus Maffi and Nolan, 1977 Rawani A (2023). Not Sci Biol 15(1):11325 6 C. psorophorae var. psorophorae Ochlerotus taeniorhynchus Aedes cinereus Aedes vexans Federici and Roberts, 1975; Popelkova, 1982; Mitchell, 1976; Goettel, 1987a C. stegomyiae var. stegomyiae Aedes aegypti Aedes albopictus Aedes scutellaris Shoulkamy et al., 1997; Lucarotti and Shoulkamy, 2000; Laird et al., 1992; Ramos et al., 1996; Padua et al., 1986; Laird, 1967 Coelomomyces punctatus Anopheles crucians Anopheles quadrimaculatus Pillai and Rakai, 1970 Conidiobolus destruens Culex pipiens Mietkiewski and Van der Geest, 1985 Coelomomyces polynesiensis Aedes polynesiensis Pillai and Rakai, 1970 Coelomomyces maclaeyae Aedes polynesiensis Pillai and Rakai, 1970 Coelomomyces numularius Anopheles squamosus Ribeiro and Da Cunha Ramos, 2000 Coelomomyces pentangulatus Culex erraticus Ribeiro and Da Cunha Ramos, 2000 Coelomomyces angolensis Culex guiarti Ribeiro, 1992 Culicinomyces bisporales Aedes kochi Sigler et al., 1987 Culicinomyces spp. (unidentified) Anopheles amictushilli Culex quinquefasciatus Sweeney, 1978a Culicinomyces clavisporus Aedes aegypti Aedes rubrithorax Aedes atropalpus epactius Anopheles farauti Anopheles stephensi Cooper and Sweeney, 1982 Frances, 1986 Couch et al., 1974 Sweeney, 1978b Couch et al., 1974 Culicinomyces clavisporus Culex erraticus Culex territans Culex quinquefasciatus Couch et al., 1974 Entomophthora culicis An. stephensi Culex pipiens Culex spp Kramer, 1982; Roberts, 1974, Roberts and Strand, 1977 Entomophthora conglomerata Culex pipiens Roberts, 1974 Entomophthora coronata Culex quinquefasciatus Lowe et al., 1968; Low and Kennel, 1972 Entomophthora musca Aedes aegypti Steinkraus and Kramer, 1987 Eryinia conica Aedes aegypti Culex restuans Cuebas-Incle, 1992 Fusarium oxysporum Aedes detritus Culex pipiens Husan and Vago, 1972; Breaud et al., 1980 Fusarium culmorum Culex pipiens Badran and Aly, 1995 Fusarium dimerum Culex pipiens Badran and Aly, 1995 Leptolegnia sp. (Unidentified) Aedes albopictus Anopheles gambiae Mansonia titillans Mansonia dyari Fukuda et al., 1997 Nnakumusana, 1986 Lord and Fukuda, 1990 Lord and Fukuda, 1990 Rawani A (2023). Not Sci Biol 15(1):11325 7 Leptolegnia chapmanii Aedes aegypti Culex quinquefasciatus Anopheles albimanus Anopheles quadrimaculatus McInnis and Zattau, 1982; Lord and Fukuda, 1990; McInnis and Zattau, 1982 McInnis and Zattau, 1982 Leptolegnia caudata Anopheles culicifacies Bisht et al., 1996 Lagenidium giganteum Aedes aegypti Anopheles freeborni Culex pipiens Rueda et al., 1990; Golkar et al., 1993 Kerwin et al., 1994 Golkar et al., 1993; Kerwin et al., 1994 Metarhizium anisopliae Aedes aegypti Aedes albopictus Culex quinquefasciatus Culex pipiens Anopheles stephensi Ramoska et al., 1981; Daoust et al., 1982 Ravallec et al., 1989 Ramoska et al., 1981; Lacey et al., 1988 Daoust and Roberts, 1982 Pythium carolinianum Aedes albopictus Culex quinquefasciatus Su et al., 2001 Pythium sierrensis Anopheles freeborni Culex tarsalis Ochlerotus triseriatus Uranotaenia anhydor Clark et al., 1966 Pythium sp. Culex tigripes Culex quinquefasciatus Nnakumusana, 1985 Paecilomyces lilacinus Aedes aegypti Agarwalda et al., 1999 Pythium sp. Culex tigripes Culex quinquefasciatus Nnakumusana, 1985 Smittium morbosum Anopheles hilli Aedes albifasciatus Sweeney, 1981d Garcia et al., 1994 Tolypocladium cylinddrosporum Aedes aegypti Aedes vexans Culiseta inornata Culex tarsalis Ochlerotus triseriatus Goettel, 1988 Goettel, 1987b Goettel 1987b Soares, 1982 Nadeau and Biosvert, 1994 Trichophyton ajelloi Anopheles stephensi Culex quinquefasciatus Mohanty and Prakash, 2000 Verticillium Lecanii Ochlerotus triseritus Ballard and Knapp, 1984 Zoophthora radicans Aedes aegypti Dumas and Papierok, 1989 AlgaeAlgaeAlgaeAlgae Mosquito larvae in their aquatic environment feed on microorganisms, small aquatic animals such as rotifers, and other small particulate matter. However, some mosquito larvae also partially or substantially depend on algal mass as a part of their diet (Merritt et al., 1992a). Mosquito larvae filter water and algae from the column, and the study suggested that in the gut, after the feeding, algae are generally presented in proportion to their abundance along with the microflora and microfauna (Ranasinghe and Amarasinghe, 2020). Coggeshall (1926) experimented with a pond with high algae production where Anopheles sp. is the foremost breeder and found an abundance of algae in their gut and a high population of Anopheles sp. in the pond. Rawani A (2023). Not Sci Biol 15(1):11325 8 Though an abundance of algae in mosquito breeding sites favours their development, some of the algal sp. might be responsible for larval mortality. Purdy (1924) revealed that some algal species could kill mosquito larvae. He found that in the California rice field, there was a dense layer of filamentous algae (blue-green algae) Tolypothrix sp., the larvae of Culex sp. and Anopheles sp. were absent. However, larvae of these mosquito species are found in the nearby pond where these blue-green algae were absent. The blue-green algae of order Chlorococcales are ill-digested by mosquito larvae. Some of the algae of this order is entirely indigestible (Marten, 2007). Some toxins (such as photometabolite toxic produced by blue-green algae Anabaena sp.; microcystins toxic produced by Oscillatoria agardhii and Anabaena circinalis) released by these algae might be responsible for larval mortality, the same toxin that causes algal bloom in the pond that kills fish and cattle (Ingram and Prescott, 1954). So, algae are not enough, but their toxins might be a point of interest in developing insecticides to control the mosquito population. In Table 4, there is a list of algae that showed the mosquito larvicide activity. Table 4Table 4Table 4Table 4. List of algal species reported as mosquito larvicide Algal Algal Algal Algal speciesspeciesspeciesspecies Mosquito speciesMosquito speciesMosquito speciesMosquito species ReferencesReferencesReferencesReferences Anabaena unispora Aedes aegypti Griffin, 1956 Anabaena circinalis Aedes aegypti Griffin, 1956 Aulosira implexa Culex tarsalis Gerhardt, 1953 Chlorella ellipsoidea Culex quinquefasciatus, Dhillon and Mulla, 1981 Rhizoclonium hieriglyphicum Aedes aegypti, Culex quinquefasciatus, Dhillon et al., 1982 Kirchneriella irregularis Aedes albopictus Marten,1984 Kirchneriella irregularis Cx. quinquefasciatus Marten, 1986a Chlorella protothecoides Ae. albopictus Marten, 1986b Ulva lactuca, Caulerpa racemosa, Sargassum microystum, Caulerpa scalpelliformis, Gracilaria corticata, Turbinaria decurrens, Turbinaria conoides and Caulerpa toxifolia 4th instar larvae of Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi Syed Ali et al., 2013 Westiellopsis sp. Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi and Culex tritaenorhynchus Rao et al., 1999 Cyanobacteria (blue-green algae) Culex Sp. Marten, 2007 Selenastrum capricornatum 3rd instar Cx. quinquefasciatus larvae Duguma et al., 2017 Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) Aedes aegypti Guedes et al., 2014 Lobophora variegate, Spatoglossum asperum, Stoechospermum marginatum, Sargassum wightii, Cx. quinquefasciatus Ae. aegypti Manilal et al., 2011 Rawani A (2023). Not Sci Biol 15(1):11325 9 Acrosiphonia orientalis, Centroceras clavulatum, Padina tetrastromatica Larvivorous fishLarvivorous fishLarvivorous fishLarvivorous fish Now a day, in developed and developing countries, particularly in urban and peri urban areas, malaria control programs alternatively focus on biological control, which includes a wide range of organisms that helps to control mosquito populations naturally through predation, parasitism, and competition. Among them, the use of larvivorous fish was also found to be most effective in the mosquito control program. Biological control is the process of the introduction or manipulation of organisms to suppress vector populations. Since early 1900, all over the world, larvivorous fish have been used extensively as biological mosquito control agents (Chandra et al., 2008a). Larvivorous fish means that they feed voraciously on immature stages of mosquitoes. Some features are required to meet the criteria of larvivorous fishes, such as must be small, hardy, and capable of getting about quickly in shallow waters amid thick weeds where mosquitoes find suitable breeding grounds. They must have the capacity to live in drinking water tanks and pools, move in deep and shallow waters, and withstand drought (Fletcher et al., 1992). They must have the capability to survive through rough handling and transportation for long distances. The fish species must be productive breeders with a short life span that can breed in confined water. Another important criterion is that it must be carnivorous and very keen to consume mosquito larvae even in the presence of other food materials, bringing out the outstanding result in regulating the mosquito population. The appearance of larvivorous fish is also a point of selection; it should not be brightly coloured. The fish should not have a nutrition value, so it will not be attractive to fish-eating people (Haq and Srivastava, 2013). Hence, the larvivorous fish should meet the maximum criteria stated above to bring out mosquito control effectively. Tables 5 and 6 represent the list of indigenous and exotic fish as biocontrol agents. Table 5. Table 5. Table 5. Table 5. Potential indigenous larvivorous fishes as biocontrol agent Larvivorous fishesLarvivorous fishesLarvivorous fishesLarvivorous fishes Mosquito speciesMosquito speciesMosquito speciesMosquito species ReferenceReferenceReferenceReference Aphanius dispar. Culex quinquefasciatus. Anopheles arabiensis. Anopheles gambiae. Fletcher 1992; Haq and Srivastava, 2013; Howard et al., 2007; Imbahale et al., 2011; Ataur- Rahim, 1981 Aplocheilus blockii. Anopheles stephensi. Aedes albopictus. Menon and Rajagopalan, 1978; Kumar et al., 1998 Aplocheilus lineatus. Aedes aegypti. MESV, 1988 Aplocheilus panchax. An. culicifacies. An. sundaicus. Cx. quinquefasciatus. Cx. vishnui. MESV, 1988 Colisa fasciatus. Mansonioides indiana Edward, 1930. Anopheles annularis Van der Wulp,1884. MESV, 1988 Sharma and Ghosh, 1989 Colisa lalia. An. annularis. MESV, 1988 Colisa sota. An. annularis. MESV, 1988 Chanda nama. An. culicifacies. An. balabocensis balabocensis. An. varuna. MESV, 1988 Oryzias melastigma. Cx. vishnui. Sharma and Ghosh, 1989 Rawani A (2023). Not Sci Biol 15(1):11325 10 Anopheles sp. Culex sp. Macropodus cupanus. Cx. fatigans. Mathavan, 1980 Tilapia mossambicus and Aplocheilus latipes An. sinensis Kim et al., 2002; Yu and Lee,1989 Oreochromis niloticus Cx. quinquefasciatus. Ghosh and Chandra, 2017 Table 6Table 6Table 6Table 6. Potential exotic larvivorous fishes as biocontrol agent Larvivorous fish Mosquito species Reference Carassius auratus An. subpictus. Cx. quinquefasciatus. Ar. subalbatus. Chatterjee et al., 1997 Gambusia affinis An. subpictus. Cx. quinquefasciatus. An. subalbatus. Ae. aegypti. An. stephensi. An. gambiae. Chatterjee and Chandra, 1997 RTDC, 2008 Zvantsov, 2008 Mahmoud, 1985 Imbahale et al., 2011 Poecilia reticulata (Guppy) An. subpictus. An. gambiae. An. subpictus. An. funestus Sitaraman et al., 1976; Menon and Rajagopalan, 1978; Sabatinelli et al., 1991 Howard et al., 2007; Kusumawathie et al., 2008 a, b Xenentodon cancila An. subpictus. Cx. quinquefasciatus. Ar. subalbatus. Chatterjee and Chandra, 1996 Oreochromis mossambica (Tilapia) Cx. quinquefasciatus. An. culicifacies. Sharma and Ghosh, 1989 Oreochromis niloticus An. gambiae An. funestus Howard et al., 2007; Ghosh et al., 2006; Ghosh and Chandra, 2017; Ambrose et al., 1993; Kim et al., 1994 Nothobranchius guentheri Anopheles sp. Vanderplank, 1941 Hyphessobrycon rosaceus Cx. vishnui Barik et al., 2018 Puntius tetrazona Cx. vishnui Barik et al., 2018 BacteriaBacteriaBacteriaBacteria In biological control, microbial biopesticides also play a significant role in controlling the vector mosquito population. Many researchers have reported some bacterial species that are useful to implement in mosquito control programs. Bacillus thuringiensis, and Bacillus sphericus can be noble alternatives for synthetic pesticides. For the last two decades, their effectiveness has been reported against Anopheles, Culex, and Aedes. However, Bacillus sphericus was reported to be very effective against Culex sp. Bacterial strain is more advantageous than synthetic insecticides as they have long-lasting efficacy without affecting non-target organisms and are cost-effective and safest for the ecosystem. It neither eliminates the pathogen nor the disease but brings them into natural balance (Raymond et al., 2010). Bacterial strains are isolated from any insect's gut in the biopesticide industry. The soil can be a promising biopesticide agent as it shows long-lasting activity in a polluted environment (Lennox et al., 2016). Many authors report the mode of action of these bacterial strains. Rawani A (2023). Not Sci Biol 15(1):11325 11 The mosquito larvae take up the crystal toxin secreted by the bacterial strain. It solubilizes in the midgut, causes activation of the protoxin by protease into an active toxin, and this toxin binds to specific receptors in the midgut brush border membrane (Bravo et al., 2007; Silva-Filha et al., 2021). Then probably, toxins' internalization occurs, and cell lysis occurs (Poopathi and Tyagi, 2004). However, bacterial pesticides mentioned above, such as Bacillus thuringiensis serotype israelensis (Bti) and B. sphaericus, are highly efficacious against mosquito larvae and have been used since many decades. Another promising bacterial origin, vector mosquito larvicide spinosad, has gained importance in the last decade and is being used in several countries. Spinosad is an insecticide product derived via fermentation from a naturally occurring soil actinomycete, Saccharopolyspora spinosa Mertz and Yao. Spinosad contains two insecticidal factors, A and D, in an 85:15% ratio within the final product. Spinosad is found to be highly active by both contact and ingestion of numerous pests in the orders Lepidoptera, Diptera, Thysanoptera, Coleoptera, Orthoptera, Hymenoptera, and others (Hertlein et al., 2010). Table 7 shows the list of bacterial strains reported as a mosquito larvicide. Table 7. Table 7. Table 7. Table 7. List of Bacterial strain reported as a mosquito larvicide Sl no.Sl no.Sl no.Sl no. Bacterial strainBacterial strainBacterial strainBacterial strain Effective against Effective against Effective against Effective against mosquito speciesmosquito speciesmosquito speciesmosquito species Effect on Effect on Effect on Effect on pupa/ pupa/ pupa/ pupa/ larvaelarvaelarvaelarvae ReferenceReferenceReferenceReference 1 Bacillus thuringiensis Anopheles sp. Larvae Balakrishnan et al., 2015 Rajendran et al., 2018 2 Bacillus sphericus Culex and Anopheles Larvae Park et al., 2010 Balakrishnan et al., 2015 3 Bacillus alvei Culex fatigans, Anopheles stephensi, Aedes aegypti. Larvae Balakrishnan et al., 2015 4 Bacillus brevis Culex fatigans, Anopheles stephensi, Aedes aegypti. Larvae Khyami-Horani et al., 1999 5 Bacillus circulans Cx. quinquefasciatus and Anopheles gambiae and Aedes aegypti. Larvae Darriet and Hougard, 2002 6 Brevibacillus laterosporus Cx. quinquefasciatus, Aedes aegypti. Larvae de Oliveira et al., 2004 7 Bacillus subtilis Cx. quinquefasciatus. Larvae Balakrishnan et al., 2015 Das and Mukherjee, 2006 8 Clostridium bifermentans Anopheles maculates Larvae de Barjac et al., 1990 9 Pseudomonas fluorescens Anopheles stephensi, Cx. quinquefasciatus, Ae. aegypti. Toxic to Larvae and pupa Jenkins, 1964 10 Streptococcus species Anopheles sp. and Culex sp. Larvae (L3, L4 stage) Kramer, 1964 11 Escherichia coli Culex mosquito Larvae (early inster) Jenkins, 1964 12 Bacillus cereus Anopheles sp. and Culex sp. Larvae Balakrishnan et al., 2015 13 Bacillus amyloliquefacien Anopheles sp Larvae and pupae Geetha et al., 2014 14 Aneurinibacillus aneurinilyticus Anopheles subpictus, Cx. quinquefasciatus, Aedes aegypti. Larva Das et al., 2016 Rawani A (2023). Not Sci Biol 15(1):11325 12 Mosquito control by plant productsMosquito control by plant productsMosquito control by plant productsMosquito control by plant products Insecticides of botanical origin can play an essential role in the interruption of the transmission of mosquito-borne diseases. These insecticides act as a larvicide, pupicide, repellent, oviposition deterrent, or fumigants to control the mosquito population. So, insecticides of plant origin are mainly secondary metabolites such as alkaloids, steroids, terpenoids, tannins, and flavonoids deposited in the plant for their defence purposes. Earlier Shaalan et al. (2005) reported that secondary metabolites from different plant species have insecticidal properties. These secondary metabolites are extracted from the plant that is either built in the body of the herb or various parts of larger plants like fruits, leaves, stems, barks, roots, etc. So, variation in insecticidal properties of these phytochemicals depends on the plant species and the geographical distribution of the plant (Chowdhury et al., 2008a). Besides that, extraction methodology and the polarity of the solvent used for the extraction process are also supportive forces to define the insecticidal properties of phytochemicals (Chowdhury et al., 2008b). After the solvent extraction, phytochemicals containing the active principle for their mosquitocidal activity are concentrated and ready for application in the mosquito control program. Here an attempt is made to give an account of the plants that has been reported so far as an insecticidal agent against various life forms of mosquito species (Table 8). 15 Bacillus sphaericus Anopheles subpictus, Cx. quinquefasciatus, Armigeres subalbatus larva Das et al., 2017 16 Saccharopolyspora spinosa Aedes aegypti An. albimanus An. pseudopunctipennis larva Bond et al., 2004 Aedes aegypti larva Perez et al., 2007 Aedes aegypti larva Antonio et al., 2009 Aedes aegypti An. stephensi Cx. pipiens larva Romi et al., 2006 Aedes aegypti larva Darriet and Cerbel, 2006 Aedes aegypti An. gambiae Cx. quinquefasciatus larva Darriet et al., 2005 Aedes aegypti larva Ayesha et al., 2006 Ae. albopictus larva Liu et al., 2004 a Cx. quinquefasciatus larva Liu et al., 2004b An. sinensis larva Shin et al., 2003 Cx. pipiens larva Cetin et al., 2005 Cx. Pipiens larva Bahgat et al., 2007 Cx. quinquefasciatus Ae. aegpti larva Jiang and Mulla, 2009 Cx. quinquefasciatus larva Sadanandane et al., 2009 Cx. quinquefasciatus larva Sadanandane et al., 2018 Rawani A (2023). Not Sci Biol 15(1):11325 13 Table 8. Table 8. Table 8. Table 8. List of plants and plant parts reported so far as mosquitocidal agent Plant Plant Plant Plant sssspeciespeciespeciespecies FamilyFamilyFamilyFamily Plant Plant Plant Plant partpartpartpartssss usedusedusedused Target mosquito Target mosquito Target mosquito Target mosquito speciesspeciesspeciesspecies ReferencesReferencesReferencesReferences Artemisia annua Asteraceae Leaf Anopheles stephensi Sharma et al., 2006 Acacia nilotica Fabaceae Leaf Anopheles stephensi Saktivadivel and Daniel, 2008 Argemone mexicana Papaveraceae Leaf, Seed Culex quinquefasciatus Karmegan et al., 1997 Jatropha curcas Euphorbiaceae Leaf Culex quinquefasciatus Rahuman et al., 2007 Carica papaya Caricaceae Seed Culex quinquefasciatus Rawani et al., 2009 Murraya paniculata Rutaceae Leaf Culex quinquefasciatus Rawani et al., 2009 Aloe barbadensi Liliaceae Leaf Anopheles stephensi Maurya et al., 2007 Solanum xanthocarpum Solanaceae Root Culex pipiens pollens Mohan et al., 2006 Cleistanthus collinus Euphorbiaceae Leaf Culex quinquefasciatus Rawani et al., 2009 Eucalyptus globulus Myrtaceae Seed, Leaf Culex pipiens Sheeren et al., 2006 Thymus capitatus Lamiaceae Leaf Culex pipiens Mansour et al., 2000 Citrus aurantium Rutaceae Fruit peel Culex quinqefasciatus Kassir et al., 1989 Myrtus communis Myrtaceae Flower and leaf Culex pipiens molestus Traboulsi et al., 2002 Alternanthera sessilis Amaranthaceae Leaf Cx. quinquefasciatus Rawani et al., 2014 Ruellia tuberosa Acanthaceae Leaf Cx. quinquefasciatus Rawani et al., 2014 Trema orientalis Cannabaceae Leaf Cx. quinquefasciatus Rawani et al., 2014 Gardenia carinata Rubiaceae Leaf Cx. quinquefasciatus Rawani et al., 2014 Piper nigram Piperaceae Seed Culex pipiens Shaalan et al., 2005 Euphorbia hirta Euphorbiaceae Stem bark Culex quinquefasciatus Rahuman et al., 2007 Polianthes tuberosa Agavaceae Bud Cx. quinquefasciatus An. stephensi Rawani et al., 2012 Ocimum basilicum Lamiaceae Leaf Anopheles stephesnsi, Culex quinquefasciatus Maurya et al., 2009 Momordica charantia Cucurbitaceae Fruit Anopheles stephensi Singh et al., 2006 Kaempferia galanga Zingiberaceae Rhizome Culex quinquefasciatus Choochote et al., 1999 Khaya senegalensis Meliaceae Leaf Culex annulirostris Shaalan et al., 2005 Rawani A (2023). Not Sci Biol 15(1):11325 14 Acacia auriculiformis Fabaceae Fruit Culex vishnui Barik et al., 2018 Curcuma aromatica Zingiberaceae Rhizome Aedes aegypti Choochate et al., 2005 Cybistax antisyphilitica Bignoniaceae Stem Wood Aedes aegypti Rodrigues et al., 2005 Eucalyptus citriodora Myrtaceae Leaf Anopheles stephensi, Culex quinquefasciatus, Aedes aegypti Singh et al., 2007 Solanum nigram Solanaceae Dried fruit Anopheles culicifacies, Anopheles stephensi Raghavendra et al., 2009 Tridax procumbens Compositae Leaf Anopheles subpictus Kamaraj et al., 2011 Ageratum conyzoides Asteraceae Leaf Culex quinquefasciatus Saxena et al., 1992 Cleome icosandra Capparaceae Leaf Culex quinquefasciatus Saxena et al., 1992 Ageratina adenophora Asteraceae Twigs Culex quinquefasciatus, Aedes aegypti Raj Mahan and Ramaswammy, 2007 Feonia limonia Rutaceae Leaf Culex quinquefasciatus, Aedes aegypti, Anopheles stephensi Rahuman et al., 2000 Millingtonia hortensis Bignoniaceae Leaf Culex quinquefasciatus, Anopheles stephensi, Aedes aegypti Kaushik and Saini, 2008 Ocimum sanctum Labiate Leaf Aedes aegypti, Culex quinquefasciatus Anees, 2008 Eucalyptu globulus Myrtaceae Seed and leaf Culex pipiens Sheeren, 2006 Phumbago zeylanica, P. Dawei, P. stenophylla Plumbaginaceae Root Anopheles gambiae Maniafu et al., 2009 Euphorbia tirucalli Euphorbiaceae Latex and stem bark Culex pipiens pallens Yadav et al., 2002 Nyctanthes arbortristis Nyctantheceae Flower Culex quinquefasciatus Khatune et al., 2001 Citrus sinensis Rutaceae Fruit peel Anopheles subpictus Bagavan et al., 2009 Aloe ngongensis Asphodelaceae Leaf Anopheles gambie Matasyoh et al., 2008 Millettia dura Leguminosae Seed Aedes aegypti Yenesew et al., 2003 Cassia obtusifolia Leguminosae Seed Aedes aegypti, Aedes togoi, Culex pipiens pollens Yang et al., 2003 Atlantia monophylla Rutaceae Leaf Anopheles stephensi Sivagnaname and Kalyanasundaram, 2004 Rawani A (2023). Not Sci Biol 15(1):11325 15 Dysoxylum malabaricum Meliaceae Leaf Anopheles stephensi Senthil Nathan et al., 2006a Melia azedarach Meliaceae Leaf and seed Anopheles stephensi Senthil Nathan et al., 2006b Moringa oleifera Moringaceae Bark Culex gelidus Kamaraj and Rahaman, 2010 Ocimum gratissimum Lamiaceae Leaf Culec gelidus Kamaraj and Rahaman, 2010 Solenostemma argel Apocynaceae Aerial part Culex pipiens Al- Doghaini et al., 2004 Chrysanthemam indicum Asteraceae Leaf Culex tritaeniorhynchus Kamaraj et al., 2010 Mormordica charantia Cucurbitaceae Leaf Culex quinquefasciatus Prabhakar and Jebanesan, 2004 Vitex negundo Verbenaceae Leaf Culex quinquefasciatus Krishnan et al., 2007 Centella asiatica Umbelliferae Leaf Culex quinquefasciatus Rajkumar and Jabanesan, 2005 Pavonia zeylanica Malvaceae Leaf Culex quinquefasciatus Vahitha et al., 2002 Coccinia indica Cucurbitaceae Leaf Culex quinquefasciatus, Aedes aegypti Rahuman et al., 2007 Cassia tora Caesulpinaceae Seed Aedes aegypti, Culex pipiens pallens Jang et al., 2002 Annona squamosa Annonaceae Leaf Anopheles sp. Das et al., 2007 Chamaecyparis obtusa Cupressaceae Leaf Anopheles stephensi Jang et al., 2005 Acalypha alnifolia Euphorbiaceae Leaf Anopheles stephensi, Aedes aegypti, Culex quinquefasciatus Kovendan et al., 2012 Solamum villosum Solanaceae Leaf, Berry Anopheles subpictus, Aedes aegypti Chowdhury et al., 2008a, 2008b, 2009 Cestrum diurmum Solanaceae Leaf Anopheles stephensi Ghosh and Chandra, 2006 Solamum nigrum Solanaceae Leaf, berry Culex quinquefasciatus Rawani et al., 2010, 2013 Cassia obtusifolia Leguminosae Leaf Anpheles stephensi Rajkumar and Jabanesan, 2009 Apium graneolens Umbelliferae Seed Aedes aegypti Choochate et al., 2004 Rhizophora mucronata Rhizophoraceae Bark, pith, stem Wood Aedes aegypti Kabaru and Gichia, 2009 Piper langum Piperaceae Fruit exocarp Aedes aegypti Chaithong et al., 2006 Rawani A (2023). Not Sci Biol 15(1):11325 16 ConclusionsConclusionsConclusionsConclusions For the vector control Programme, an abundance of strategies has been developed and are being adopted in different parts of the world. In the present review work, emphasis has been given towards the use of biological control agents as the most effective tool for the control of the vector mosquito population. An effort has been given to control the immature stages of mosquitoes by using biological control agents. In mosquito control programmes, larval forms are a point of attraction because there are confined in water bodies and are easy to locate and control. The development of resistance and adverse effect of synthetic insecticides on the environment and other non-target organisms has shifted the research effort toward an alternative way to reduce the mosquito menace. Over the past few years, biological control of mosquitoes has been given more importance to develop safer methods regarding toxicity to man, the environment and other non-target organisms. So biological control of vector mosquitoes includes using aquatic insects, copepods, and larvivorous fish as a predator of mosquito larvae; the use of pathogens like algae, fungi, and bacteria, and insecticides of plant origin. Since a single method of control cannot be enough to bring out the desired results, importance should be given to the multiple vector mosquito control approaches, including insecticides, biocontrol agents, and environmental management. Authors’ ContributionsAuthors’ ContributionsAuthors’ ContributionsAuthors’ Contributions The author read and approved the final manuscript. Ethical approvalEthical approvalEthical approvalEthical approval (for researches involving animals or humans) Not applicable. AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements This research received no specific grant from any funding agency in the public, commercial, or not-for- profit sectors. Conflict of InterestsConflict of InterestsConflict of InterestsConflict of Interests The authors declare that there are no conflicts of interest related to this article. ReferencesReferencesReferencesReferences Aditya G, Pramanik MK, Saha GK (2006). Larval habitats and species composition of mosquitoes in Darjeeling Himalayas, India. Journal of Vector Borne Disease 43(1):7-15. Agarwala SP, Sagar SK, Sehgal SS (1999). Use of mycelial suspension and metabolites of Paecilomyces lilacinus (Fungi: Hyphomycetes) in control of Aedes aegypti larvae. Journal of Communal Disease 31:193-196. Al-Doghairi M, El-Nadi A, El hag E, Al-Ayedh H (2004). Effect of Solenostemma argel on oviposition, egg hatchability and viability of Culex pipiens L. larvae. Phytotherapy Research 18:335-338. https://doi.org/10.1002/ptr.1432 Rawani A (2023). Not Sci Biol 15(1):11325 17 Ambrose T, Mani T, Vincent S, Cyril L, Kumar A, Mathews KT (1993). Biocontrol efficacy of Gerris spinolae, Laccotrephes griseus and Gambusia affinis on larval mosquitoes. Indian Journal of Malariology 30:187-92. Anees AM (2008). Larvicidal activity of Ocimum sanctum Linn. (Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Parasitology Research 101:1451-1453. https://doi.org/10.1007/s00436-008-0991-7 Antonio GE, Sanchez D, Williams T, Marina C (2009). Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Pest Management Science 65:323-326. https://doi.org/10.1002/ps.1683 Ataur-Rahim M (1981). Observations on Aphanius dispar (Ruppell, 1828), a mosquito larvivorous fish in Riyadh, Saudi Arabia. Annals of Tropical Medicine and Parasite 75:359-362. https://doi.org/10.1080/00034983.1981.11687451 Ayesa P, Harrington LC, Scott JG (2006). Evaluation of novel insecticides for control of the dengue vector, Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 43:55-60. https://doi.org/10.1603/0022- 2585(2006)043[0055:EONIFC]2.0.CO;2 Badran RAM, Aly MZY (1995). Studies on the mycotic inhabitants of Culex pipiens collected from fresh water ponds in Egypt. Mycopathologia 132:105-110. https://doi.org/10.1007/BF01103782 Bagavan A, Kamaraj C, Rahuman A, Elango G, Zahir AA, Pandiyan G (2009). Evaluation of larvicidal and nymphicidal potential of plant extracts against Anopheles subpictus Grassi, Culex tritaeniorhynchus Giles and Aphis gossypii Glover. Parasitology Research 104:1109-1117. https://doi.org/10.1007/s00436-008-1295-7 Bahgat IM, El Kady GA, Temerak SA, Lysandrou M (2007). The natural bio-insecticide spinosad and its toxicity to combat some mosquito species in Ismailia Governorate, Egypt. World Journal of Agricultural Science 3:396-400. https://doi.org/10.2987/09-5936.1 Balakrishnan S, Indira K, Srinivasan M (2015). Mosquitocidal properties of Bacillus species isolated from mangroves of Vellar estuary, Southeast coast of India. Journal of Parasitic Disease 39(3):385-392. https://doi.org/10.1007/s12639-013-0371-9 Baldacchino F, Bruno MC, Visentin P, Blondel K, Arnoldi D, Hauffe HC, Rizzoli A (2017). Predation efficiency of copepods against the new invasive mosquito species Aedes koreicus (Diptera: Culicidae) in Italy. The European Zoological Journal 84:43-48. https://doi.org/10.1080/11250003.2016.1271028 Ballard EM, Knapp FW (1984). Occurrence of the fungus Verticillium lecanii on a new host species: Aedes triseriatus (Diptera: Culicidae). Journal of Medical Entomology 21:6. https://doi.org/10.1093/jmedent/21.6.751 Barik M, Bhattacharjee I, Ghosh A, Chandra G (2018). Larvivorous potentiality of Puntius tetrazona and Hyphessobrycon rosaceus against Culex vishnui subgroup in laboratory and field-based bioassay. BMC Research Notes 11(1):1-5. https://doi.org/10.1186/s13104-018-3902-8 Barik M, Rawani A, Laskar S, Chandra G (2018). Evaluation of mosquito larvicidal activity of fruit extracts of Acacia auriculiformis against the Japanese encephalitis vector Culex vishnui. Natural Product Research 1-5. https://doi.org/10.1080/14786419.2018.1428585 Bay EC (1974). Predatory-prey relationships among aquatic insects. Annual Review of Entomology 19:441-453. https://doi.org/10.1146/annurev.en.19.010174.002301 Beatty ME, Leston W, Edgil DM (2007). Estimating the total world population at risk for locally acquired dengue infection. Proceedings of 56th Annual Meeting of American Society of Tropical Medicine and Hygiene, Philadelphia, Pennysylvania, USA, pp 4-8. Bisht GS, Joshi C, Khulbe RD (1996). Watermolds: Potential biological control agents of malaria vector Anopheles culicifacies. Current Science 70:393-395. Bond JG, Marina CF, Williams T (2004). The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Medical Veterinary Entomology 18:50-56. https://doi.org/10.1111/j.0269-283x.2004.0480.x Bravo A, Gill SS, Soberón M (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423-435. https://doi.org/10.1016/j.toxicon.2006.11.022 Breaud TP, Crabbe JR, Majori G (1980). The isolation of Fusarium oxysporum from a natural population of Aedes detritus in Italy. Mosquito News 40:654. Brian A (2009). Federici. In: Resh V, Cardee R (Eds). Encyclopedia of Insects. Second Edition Rawani A (2023). Not Sci Biol 15(1):11325 18 Brown MD, Kay BH, Hendrikz JK (1991). Evaluation of Australian Mesocyclops (Cyclopoida: Cyclopidae) for mosquito control. Journal of Medical Entomology 28(5):618-623. https://doi.org/10.1093/jmedent/28.5.618 Bukhari T, Takken W, Koenraadt CJ (2011). Development of Metarhizium anisopliae and Beauveria bassiana formulations control of malaria mosquito larvae. Parasites and Vectors 4(1):1. https://doi.org/10.1186/1756- 3305-4-23 Butt TM, Greenfield BP, Greig C, Maffeis TG, Taylor JW, Piasecka J, Quesada-Moraga E (2013). Metarhizium anisopliae pathogenesis of mosquito larvae: a verdict of accidental death. PLoS One 8(12):e81686. https;//doi.org/10.1371/journal.pone.0081686 Cetin H, Yanikoglu AA (2006). Study of the larvicidal activity of Origanum (Labiatae) species from southwest Turkey. Journal of Vector Ecology 31(1):118-122. https://doi.org/10.3376/1081-1710(2006)31[118:asotla]2.0.co;2 Cetin HA, Yanikoglu A, Cilek JE (2005). Evaluation of the naturally-derived insecticide spinosad against Culex pipiens L. (Diptera: Culicidae) larvae in septic tank water in Antalya, Turkey. Journal of Vector Ecology 30:151-154. Chaithong U, Choocate W, Kamsuk K, Jitpakdi A, Tippawangkosol P, Chaiyasit D, … Pitasawat B (2006). Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae). Journal of Vector Ecology 31:138-144. https://doi.org/10.3376/1081-1710(2006)31[138:leoppo]2.0.co;2 Chandra G, Bhattacharjee I, Chatterjee SN (2008a). Mosquito control by larvivorous fish. Indian Journal of Medical Research 127:1327. Chandra G, Mandal S, Ghosh A, Das D, Banerjee S, Chakraborty S (2008b). Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae). BMC Infectious Diseases 8:138. https://doi.org.10.1186/1471-2334-8-138 Chatterjee SN, Ghosh A, Chandra G (2007). Eco-friendly control of mosquito larvae by Brachytron pratense nymph. Journal of Environmental Health 69(8):44-49. Chatterjee SN, Das S, Chandra G (1997). Gold fish (Carrasius auratus) as a strong larval predator of mosquito. Trans Zool Soc India 1:112-114. Chowdhury N, Laskar S, Chandra G (2008a). Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves. BMC Complementary Alternative Medicine 8:62. https://doi.org/10.1186/1472-6882-8-62 Chowdhury N, Ghosh P, Chandra G (2008b). Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti. BMC Complementary Alternative Medicine 8:10. https://doi.org/10.1186/1472- 6882-8-10 Chowdhury N, Chatterjee SK, Laskar S and Chandra G (2009). Larvicidal activity of Solanum villosum Mill (Solanaceae: Solanales) leaves to Anopheles subpictus Grassi (Diptera: Culicidae) with effect on non-target Chironomus circumdatus Kieffer (Diptera: Chironomidae). BMC Complementary Alternative Medicine 82:13-18. https://doi.org/10.1007/s10340-008-0213-1 Chesson J (1989). The effect of alternative prey on the functional response of Notonecta hoffmani. Ecology 70(5):1227- 1235. https://doi.org/10.2307/1938180 Chatterjee SN, Chandra G (1996). Laboratory trials on the feeding pattern of Anopheles subpictus, Culex quinquefasciatus and Armigeres subalbatus by Xenentodon cancila fry. Environmental Ecology 14:173-174. Choochate W, Kanjanapothi D, Panthong A, Taesotikul T, Jitpakdi A, Chaithong U (1999). Larvicidal, adulticital and repellent effects of Kaempferia galangal. South East Journal of Tropical Medicine and Public Health 30:470-476. Choochote W, Tuetun B, Kanjanapothi D, Rattanachanpichai E, Chaithong U, Chaiwong P, … Pitasawat B (2004). Potential of crude seed extract of celery, Apium graveolens L., against the mosquito Aedes aegypti (L.) (Diptera: Culicidae). Journal of Vector Ecology 29:340-346. Choochate W, Chaiyasit D, Kanjanapothi D, Rattanachanpichai E, Jitpakdi A, Tuetun B, Pitasawat B (2005). Chemical composition and anti-mosquito potential of rhizome extract and volatile oil derived from Curcuma aromatica against Aedes aegypti (Diptera: Culicidae) Journal of Vector Ecology 30:302-309. Clark TB, Kellen WR, Lindegren JE and Sanders RD (1966). Pythium sp. (Phycomycetes: Pythiales) pathogenic to mosquito larvae. Journal of Invertebrate Pathology 8:351-354. https://doi.org/10.1016/0022-2011(66)90049-8 Clark TB, Kellen WR, Fukuda T, Lindegren JE (1968). Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. Journal of Invertebrate Pathology 11(1):1-7. https://doi.org/10.1016/0022-2011(68)90047-5 Coggeshall L (1926). Relationship of plankton to anopheline larvae. American Journal of Hygiene 10:45-50. Rawani A (2023). Not Sci Biol 15(1):11325 19 Collins FH, Washino RK (1985). Insect predators. In: Chapman HC (Ed). Biological Control of Mosquitoes. Bulletin of the American Mosquito Control Association 6:25-42. Cordoba AA, Lee M (1995). Prey size selection by Orthemis ferruginea (Fabricius) larvae (Odonata: Libellulidae) over mosquito instar. Folia Entomologica Mexicana 91:23-30. Cooper R, Sweeney AW (1982). The comparative activity of the Australian and United States strains of Culicinomyces clavosporus bioassayed in mosquito larvae of three different genera. Journal of Invertebrate Pathology 40:383-387. https://doi.org/10.1016/0022-2011(82)90177-X Couch JN, Romney SV, Rao B (1974). A new fungus which attacks mosquitoes and related diptera. Mycologia 66:374- 379. Cuebas-Incle EL (1992). Infection of adult mosquitoes by the entomopathogenic fungus Erynia conica (Entomophthorales: Entomophthoraceae). Journal of American Mosquito Control Association 8:367-371. Cuthbert RN, Dalu T, Wasserman RJ, Callaghan A, Weyl OL, Dick JT (2018). Calanoid copepods: an overlooked tool in the control of disease vector mosquitoes. Journal of Medical Entomology 55(6):1656-1658. https://doi.org/10.1093/jme/tjy132 Daoust RA, Ward MG and Roberts DW (1982). Effect of formulation on the virulence of Metarhizium anisopliae conidia against mosquito larvae. Journal of Invertebrate Pathology 40:228-236. https://doi.org/10.1016/0022- 2011(82)90120-3 Darriet F, Hougard J (2002). An isolate of Bacillus circulans toxic to mosquito larvae. Journal of American Mosquito Control Association 18:65-67. Darriet F, Duchon S, Hougard JM (2005). Spinosad: a new larvicide against insecticide-resistant mosquito larvae. Journal of American Mosquito Control Association 21:495-496. https://doi.org/10.2987/8756- 971X(2006)21[495:SANLAI]2.0.CO;2 Darriet F, Corbel V (2006). Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. Journal of Medical Entomology 43:1190-1194. https://doi.org/10.1093/jmedent/43.6.1190. Das K, Mukherjee AK (2006). Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Tropica 97(2):168-173. https://doi.org/10.1016/j.actatropica.2005.10.002. Das NG, Goswami D, Rabha B (2007). Preliminary evaluation of mosquito larvicidal efficacy of plant extracts. Journal of Vector Borne Disease 44:145-148. Das D, Chatterjee S, Dangar TK (2016). Characterization and mosquitocidal potential of the soil bacteria Aneurinibacillus aneurinilyticus isolated from Burdwan, West Bengal, India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 86(3):707-713. https://doi.org/10.1007/s40011-015-0510-4 Das D, Banerjee S, Roy AS, Chatterjee S, Chandra G (2017). Characterization of a strain of Bacillus sphaericus isolated from local rice field and its virulence against mosquito larvae, Molecular Entomology 8(2):1-9. https://doi.org/10.5376/me.2017.08.0002 de Barjac H, Sebald M, Charles JF, Cheong WH, Lee HH (1990). Clostridium bifermentans serovar malaysia, une nouvelle bactérie anaérobie pathogène des larves de moustiques et de simulies. CR Academy of Sciences Paris 310:383-387. de Oliveira EJ, Rabinovitch L, Monnerat RG, Passos LK, Zahner V (2004). Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Applied Environment and Microbiology 70(11):6657-6664. https://doi.org/10.1128/AEM.70.11.6657-6664.2004 Digma JR, Sumalde AC, Salibay CC (2019). Laboratory evaluation of predation of Toxorhynchites amboinensis (Diptera: Culicidae) on three mosquito vectors of arboviruses in the Philippines. Biological Control 137. https://doi.org/10.1016/j.biocontrol.2019.104009. Dhillon MS, Mulla MS (1981). Biological activity of the green algae Chlorella ellipsoidea against the immature mosquitoes. Mosquito News 41:368-372. Dhillon MS, Mulla MS, Hwang Y (1982). Biocidal activity of algal toxins against immature mosquitoes. Journal of Chemical Ecology 8:557-566. https://doi.org/10.1007/BF00987803 Duguma D, Ortiz SL, Lin Y, Wilson PC, Walton WE (2017). Effects of a larval mosquito biopesticide and Culex larvae on a freshwater nanophytoplankton (Selenastrum capricornatum) under axenic conditions. Journal of Vector Ecology 42(1):51-59. https://doi.org/10.1111/jvec.12239 Rawani A (2023). Not Sci Biol 15(1):11325 20 Dumas JL, Papierok B (1989). Virulence de l’entomophthorale Zoophthora radicans (Zygomycetes) à l’égard des adultes de Aedes aegypti (Dipt.: Culicidae). Entomophaga 34:321-330. https://doi.org/10.1007/BF02372471 Ellis RA, Borden JH (1970). Predation by Notonecta undulata on larvae of the yellow fever mosquito. Annals of Entomological Society of America 63:963-978. EL Rayah E (1975). Dragonfly nymphs as active predators of mosquito larvae. Mosquito News 35:229-230. Fischer S, Pereyra D. Fernández L (2012). Predation ability and non-consumptive effects of Notonecta sellata (Heteroptera: Notonectidae) on immature stages of Culex pipiens (Diptera: Culicidae). Journal of Vector Ecology 37(1):245-251. https://doi.org/10.1111/j.1948-7134.2012.00223.x Frances SP (1986). Record of the mosquito pathogenic fungus Culicinomyces clavisporus Couch, Romney and Rao infecting larvae of Culiseta inconspicua Lee (Diptera: Culicidae) in Victoria. Journal of Australian Society 25:60. https://doi.org/10.1111/j.1440-6055.1986.tb01070.x Frances SP, Sweeney AW, Humber RA (1989). Crypticola clavulifera gen. et sp. nov. and Coelomomyces giganteum: Oomycetes pathogenic for Dipterans infesting leaf axils in an Australian rain forest. Journal of Invertebrate Pathology 54:103-111. https://doi.org/10.1016/0022-2011(89)90146-8. Federici BA, Roberts DW (1975). Experimental laboratory infection of mosquito larvae with fungi of the genus Coelomomyces.1. Experiments with Coelomomyces psorophorae var.in Aedes taeniorhynchus and Coelomomyces psorophorae var.in Culiseta inornata. Journal of Invertebrate Pathology 26:21-27. https://doi.org/10.1016/0022- 2011(75)90164-0 Fletcher M, Teklehaimanot A, Yemane G (1992). Control of mosquito larvae in the port city of Assab by an indigenous larvivorous fish, Aphanius dispar. Acta Tropica 52:155‐166. https://doi.org/10.1016/0001-706x(92)90032-s Focks DA, Sackett SR, Bailey DL (1982). Field experiments on the control of Aedes aegypti and Culex quinquefasciatus by Toxorhynchites rutilus rutilus (Diptera: Culicidae). Journal of Medical Entomology 19:336-339. https://doi.org/10.1093/jmedent/19.3.336. Fukuda T, Willis O, Barnard DR (1997). Parasites of the Asian tiger mosquito and other container-inhabiting mosquitoes (Diptera: Culicidae) in northcentral Florida. Journal of Medical Entomology 34:226-233. https://doi.org/10.1093/jmedent/34.2.226. García JJ, Campos RE, Maciá A (1994). Prospección de enemigos naturales de Culicidae (Diptera) de la selva marginal de Punta Lara (Prov. de Buenos Aires, República Argentina). Revista Academia Colombiana Ciencias Exactas Fisicas y Naturales 19:209-215. Geetha I, Aruna R, Manonmani AM (2014). Mosquitocidal Bacillus amyloliquefaciens: dynamics of growth & production of novel pupicidal biosurfactant. Indian Journal of Medical Research 40(3):427-434. Gerberg EJ, Visser WM (1978). Preliminary field trial for the biological control of Aedes aegypti by means of Toxorhynchites brevipalpis, a predatory mosquito larva. Mosquito News 38:197- 200. Gerhardt RW (1953). Blue-green algae –a possible antimosquito measure for rice fields. Proceedings of California Mosquito Associaton 22:50-53. Ghosh A, Bhattacharjee I and Chandra G ((2006). Biocontrol efficacy by Oreochromis niloticus niloticus. Journal of Applied Zoological Research 17:114-116. Ghosh A, Chandra G (2006). Biocontrol efficacy of Cestrum diurnum L. (Solanaceae: Solanales) against the larval forms of Anopheles stephensi. Natural Product Research 20:371-376. https://doi.org/10.1080/14786410600661575. Ghosh A, Chandra G (2011). Functional responses of Laccotrephes griseus (Hemiptera: Nepidae) against Culex quinquefasciatus (Diptera: Culicidae) in laboratory bioassay. Journal of Vector Borne Disease 48(2):72-77. Ghosh A, Chandra G (2017). Functional response and density dependent feeding interaction of Oreochromis niloticus against immatures of Culex quinquefasciatus. Journal of Vector Borne Disease 54(4):366. https://doi.org/10.4103/0972-9062.225843 Gibbons RV, Vaughn DW (2002). Dengue: an escalating problem. British Medical Journal 324:1563-1566. https://doi.org/10.1136/bmj.324.7353.1563 Goettel MS (1987a). Field incidence of mosquito pathogens and parasites in central Alberta. Journal of American Mosquito Control Association 3:231-238. Goettel MS (1987b). Preliminary field trials with the entomopathogenic hypmycete Tolypocladium cylindrosporum in Central Alberta. Journal of American Mosquito Control Association 3:239-245. Rawani A (2023). Not Sci Biol 15(1):11325 21 Goettel MS (1988). Pathogenesis of the Hyphomycete Tolypocladium cylindrosporum in the mosquito Aedes aegypti. Journal of Invertebrate Pathology 51:259-274. https://doi.org/10.1016/0022-2011(88)90033-X Golkar L, LeBrun RA, Ohayon H, Gounon P, Papierok B, Brey PT (1993). Variation of larval susceptibility to Coelomomyces giganteum in three mosquito species. Journal of Invertebrate Pathology 62:1-8. https://doi.org/10.1006/jipa.1993.1066 Griffin G (1956). An investigation of Anabaena unispora Gardner and other cyanobacteria as a possible mosquito factor in Salt Lake County, Utah. MSc thesis, Dept. Zoology, University Utah. Guedes EAC, Carvalho CM, Ribeiro Junio KAL, Ribeiro TFL, Barros LD, de Lima MRF, Moura FBP, Sant’Ana AEG (2014). Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae. Journal of Parasite Research 1-6. https://doi.org/10.1155/2014/501328 Guha-Sapir D, Schimmer B (2005). Dengue fever: new paradigms for a changing epidemiology. Emerging Themes of Epidemiology 2(1):1. https://doi.org/10.1186/1742-7622-2-1 Haq S, Srivastava HC (2013). Efficacy of Aphanius dispar (Rüppell) an indigenous larvivorous fish for vector control in domestic tanks under the Sardar Sarovar Narmada project command area in District Kheda, Gujarat. Journal of Vector Borne Disease 50(2):137‐140. Hertlein MB, Mavrotas C, Jousseaume C, Lysandrou M, Thompson GD, Jany Wl (2010). A review of spinosad as a natural product for larval mosquito control. Journal of American Mosquito Control Association 26:67-87. https://doi.org/10.2987/09-5936.1 Hribar LJ, Mullen GR (1991). Predation by Bezzia larvae (Diptera: Ceratopogonidae) on mosquito larvae (Diptera: Culicidae). Entomological News 102:183-186. Honório NA, de Barros FSM, Tsouris P, Rosa-Freitas MG (2007). Occurrence of Toxorhynchites guadeloupensis (Dyar & Knab) in oviposition trap of Aedes aegypti (L.) (Diptera: Culicidae). Neotropical Entomology 36(5):809-811. https://doi.org/10.1590/s1519-566x2007000500025. Howard AF, Zhou G, Omlin FX (2007). Malaria mosquito control using edible fish in western Kenya: preliminary findings of a controlled study. BMC Public Health 7(199):1‐6. https://doi.org/10.1186/1471-2458-7-199 Husan S, Vago C (1972). The pathogenicity of Fusarium oxysporum to mosquito larvae. Journal of Invertebrate Pathology 19:268-271. https://doi.org/10.1016/0022-2011(72)90155-3 Imbahale SS, Mweresa CK, Takken W, Mukabana WR (2011). Development of environmental tools for anopheline larval control. Parasites and Vectors 4:130. https://doi.org/10.1186/1756-3305-4-130 Ingram WM, Prescott G (1954). Toxic fresh-water algae. American Midland Naturalist 75-87. https://doi.org/10.2307/2422044. Jang YS, Baek BR, Yang YC, Kim MK, Lee HS (2002). Larvicidal activity of leguminous seeds and grains against Aedes aegypti and Culex pipiens pallens. Journal of American Mosquito Control Association 18:210-213. Jang YS, Jeon JH, Lee HS (2005). Mosquito larvicidal activity of active constituent derived from Chamaecyparis obtuse leaves against 3 mosquito species. Journal of American Mosquito Control Association 21:400-403. https://doi.org/10.2987/8756-971X(2006)21[400:MLAOAC]2.0.CO;2 Jenkins DW (1964). Pathogens, Parasites and Predators of Medically Important Arthropods. Annotated List and Bibliography. Bulletin of World Health Organization 30:1-150. Jiang Y, Mulla MS (2009). Laboratory and field evaluations of spinosad, a biorational natural product, against larvae of Culex mosquitoes. Journal of American Mosquito Control Association 25:456-466. https://doi.org/10.2987/Moco-09-5925.1 Kabaru J, Gichia L (2009). Insecticidal activity of extracts derived from different parts of the mangrove tree Rhizophora mucronata (Rhizophoraceae) Lam. against three arthropods. African Journal of Science and Technology 2(2):44- 49. https://doi.org/10.4314/ajst.v2i2.44668 Kamaraj C, Rahuman AA (2010). Larvicidal and adulticidal potential of medicinal plant extracts from south India against vectors. Asian Pacific Journal of Tropical Medicine 3:948-953. https://doi.org/10.1016/S1995-7645(11)60006-0 Kamaraj C, Rahuman AA, Bagavan A, Abduz Zahir A, Elango G, Kandan P (2010). Larvicidal efficacy of medicinal plant extracts against Anopheles stephensi and Culex quinquefasciatu (Diptera: Culicidae) Tropical Biomedicine 27:211- 219. Rawani A (2023). Not Sci Biol 15(1):11325 22 Kamaraj C, Bagavan A, Elango G, Zahir AA, Rajkumar G, Mariamuthu S, Santhoshkumar T, Rahuman AA. (2011). Larvicidal activity of medicinal plant extracts against Anopheles subpictus and Culex tritaeniorhynchus. Indian Journal of Medical Research 134(1):101-116. Karmegan N, Sakthivadivel M, Anuradha V, Daniel T (1997). Indigenous plant extracts as larvicidal agents against Culex quinquefasciatus Say. Bioresource Technology 5:137-140. Kassir JT, Mohsen ZH, Mehdi NS (1989). Toxic effects of limonene against Culex quinquefasciatus Say larvae and its interference with oviposition. Journal of Pest Science 62:19-21. https://doi.org/10.1007/BF01905742 Kaushik R, Saini P (2008). Larvicidal activity of leaf extract of Millingtonia hortensis (Family: Bignoniaceae) against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Journal of Vector Borne Disease 45:66-69. Kay B, Nam V, Tien T, Yen N, Phong T, Diep VT, ... Aaskov J (2002). Vietnam. Control of Aedes vectors of Dengue in three provinces of Vietnam by use of Mesocyclops (Copepoda) and community-based methods validated by entomologic, clinical, and serological surveillance. American Journal of Tropical Medicine and Hygiene 66:40-48. https://doi.org.10.4269/ajtmh.2002.66.40 Kerwin JL, Dritz DA, Washino RK (1994). Pilot scale production and application in wildlife ponds of Coelomomyces giganteum (Oomycetes: Lagenidiales). Journal of American Mosquito Control Association 10:451-455. Khatune NA, Md. Haque E and Md. Mosaddik A (2001). Laboratory evaluation of Nyctanthes arbortristis Linn. flower extract and its isolated compound against common filarial Vector, Cufex quinquefasciatus Say (Diptera: culicidae) Larvae. Pakistan Journal of Biological Science 4:585-587. https://doi.org/10.3923/pjbs.2001.585.587 Khyami-Horani H, Katbeh-Bader A, Mohsen ZH (1999). Isolation of endospore forming bacilli toxic to Culiseta longiareolata (Diptera: Culicidae) in Jordan. Letter of Application Microbiology 128:57-60. https://doi.org/10.1046/j.1365-2672.1999.00469.x Kim HC, Kim MS, Yu HS (1994). Biological control of vector mosquitoes by the use of fish predators, Moroco oxycephalus and Misgurnus anguillicandatus in the laboratory and semi field rice paddy. Korean Journal of Entomology 24:269- 284. Kim HC, Lee JH, Yang KH, Yu HS (2002). Biological control of Anopheles sinensis with native fish predators (Aplocheilus and Aphyocypris) and herbivorous fish Tilapia in natural rice fields in Korean Journal of Entomology 32(4):247‐250. Doi: https://doi.org/10.1111/j.1748-5967.2002.tb00037.x. Kramer JP (1964). Parasites in laboratory colonies mosquitoes. Bulletin of the World Health Organisation 31:475-478. Kramer JP (1982). Entomophthora culicis (Zygomycetes, Entomophthorales) as a pathogen of adult Aedes aegypti (Diptera, Culicidae). Aquatic Insects 4:73-79. Doi: https://doi.org/10.1080/01650428209361085. Krishnan K, Senthilkumar A, Chandrasekaran M and Venkatesalu V (2007). Differential larvicidal efficacy of four species of Vitex against Culex quinquefasciatus larvae. Parasitology Research 10:1721-1723. https://doi.org/10.1007/s00436-007-0714-5 Kondrachine AV (1992). Malaria in WHO Southeast Asia region. Indian Journal of Malarial Research 29:129-160. Koenraadt CJM, Takken W (2003). Cannibalism and predation among larvae of the Anopheles gambiae complex. Medical Veterinary Entomology 17:61-66. https://doi.org/10.1046/j.1365-2915.2003.00409.x Kovendan K, Murugan K, Vincent S, Barnard D (2012). Efficacy of larvicidal and pupicidal properties of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract and Metarhizium anisopliae (Metsch.) against Culex quinquefasciatus Say. (Diptera: Culicidae). Journal of Biopesticides 5:170-176. Kumar A, Sharma VP, Sumodan PK, Thavaselvam D (1998). Field trials of biolarvicide Bacillus thuringiensis var. israelensis strain 164 and the larvivorous fish Aplocheilus blocki against Anopheles stephensi for malaria control in Goa, India. Journal of American Mosquito Control Association 4: 457-462. Kusumawathie PHD, Wickremasinghe AR, Karunaweera ND, Wijeyaratne MJS (2008a). Larvivorous potential of the guppy, Poecilia reticulata, in anopheline mosquito control in riverbed pools below the Kotmale dam, Sri Lanka. Asia‐Pacific Journal of Public Health 20(1):56‐63. https://doi.org/10.1177/1010539507308507 Kusumawathie PHD, Wickremasinghe AR, Karunaweera ND, Wijeyaratne MJS (2008b). Costs and effectiveness of application of Poecilia reticulata (guppy) and temephos in anopheline mosquito control in river basins below the major dams of Sri Lanka. Transaction of Royal Society of Tropical Medical Hygiene 102(7):705‐711. https://doi.org/10.1016/j.trstmh.2008.03.013 Rawani A (2023). Not Sci Biol 15(1):11325 23 Laird M (1967). A coral island experiment: a new approach to mosquito control. Chronicle of World Health Organisation 21:18-26. Laird M, Mogi M, Sota T (1992). Nothernmost occurrences of the protistan pathogen, Coelomomyces stegomyiae var. stegomyiae. Journal of American Mosquito Control Association 8:430-432. Lacey CM, Lacey LA, Roberts DR (1988). Route of invasion and histopathology of Metarhizium anisopliae in Culex quinquefasciatus. Journal of Invertebrate Pathology 52:108-118. https://doi.org/10.1016/0022-2011(88)90109-7. Lee FC (1967). Laboratory observations on certain mosquito larval predators. Mosquito News 27(3):332-338. Lennox JA, Kalu O, Egbe JG (2016). Screening of bacteria isolated from the environment for the capability to control mosquito larva. African Journal of Bacteriology Research 8:29-34. https://doi.org/10.5897/JBR2016.0203 Linus Früh, Helge Kampen, Günter A. Schaub, Doreen Werner (2019). Predation on the invasive mosquito Aedes japonicus (Diptera: Culicidae) by native copepod species in Germany. Journal of Vector Ecology 44(2):241-247. https://doi.org/10.1111/jvec.12355 Liu H, Cupp EW, Guo A, Liu N (2004a). Insecticide resistance in Alabama and Florida mosquito strains of Aedes albopictus. Journal of Medical Entomology 41:946-952. https://doi.org/10.1603/0022-2585-41.5.946. Liu H, Cupp EW, Micher KM, Guo A, Liu N (2004b). Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefaciatus. Journal of Medical Entomology 41(3):408-413. Lord JC, Fukuda T (1990). A Leptolegnia (Saprolegniales) pathogenic for mosquito larvae. Journal of Invertebrate Pathology 55:130-132. https://doi.org/10.1016/0022-2011(90)90043-6. Lowe RE, Rumbaugh RG, Patterson RS (1968). Entomophthora coronata as a pathogen of mosquitoes. Journal of Invertebrate Pathology 11:506-507. https://doi.org/10.1016/0022-2011(68)90201-2 Lowe RE, Kennel EW (1972). Pathogenicity of the fungus Entomophthora coronata in Culex pipiens quinquefasciatus and Aedes taeniorhynchus. Mosquito News 32:614-620. Lundkvist E, Landin J, Jackson M, Svensson C (2003). Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. Bulletin of Entomology Research 93(3):219-226. https://doi.org/10.1079/BER2003237. Lucarotti CJ, Shoulkamy MA (2000). Coelomomyces stegomyiae infection in adult female Aedes aegypti following the first, second, and third host blood meals. Journal of Invertebrate Pathology 75:292-295. https://doi.org/10.1006/jipa.2000.4937 Maffi M, Nolan RA (1977). Coelomomyces lairdi, n. sp., a fungal parasite of larvae of the Anopheles (Cellia) punctulatus complex (Diptera: Culicidae) from the highlands of Irian Jaya (Indonesian New Guinea). Journal of Medical Entomology 14:29-32. https://doi.org/10.1093/jmedent/14.1.29. Mahmoud AA (1985). Mosquito fish Gambusia affinis holbrooki as a malaria vector control agent in Gezira irrigation canals of the Sudan. Journal of American Mosquito Control Association 1(4):524‐526. Mandal SK, Ghosh A, Bhattacharjee I, Chandra G (2008). Biocontrol efficiency of odonate nymphs against larvae of the mosquito, Culex quinquefasciatus Say, 1823. Acta Tropica 106:109-114. https://doi.org/10.1016/j.actatropica.2008.02.002. Manilal A, Thajuddin N, Selvin J, Idhayadhulla A, Kumar SR, Sujith S (2011). In vitro mosquito larvicidal activity of marine algae against the human vectors, Culex quinquefasciatus (Say) and Aedes aegypti (Linnaeus) (Diptera: Culicidae). International Journal of Zoological Research 7:272-278. https://doi.org/10.3923/ijzr.2011.272.278. Maniafu BM, Wilber L, Ndiege IO, Wanjala CCT, Akenga TA (2009). Larvicidal activity of extracts from three Plumbago spp against Anopheles gambiae. Memórias do Instituto Oswaldo Cruz 104:813- 817. https://doi.org/10.1590/s0074-02762009000600002 Mansour SA, Messeha SS, EL-Gengaihi SE (2000). Botanical biocides. Mosquitocidal activity of certain Thymus capitatus constituents. Journal of Natural Toxicology 9:49-62. Marten GG (1984). Impact of the copepod Mesocyclops leuckarti pilosa and the green alga Kirchneriella irregularis upon larval Aedes albopictus (Diptera: Culicidae). Bulletin of the Society of Vector Ecology 9(1):1-5. Marten GG (1986a). Mosquito control by plankton management: the potential of indigestible green algae. Journal of Tropical Medicine and Hygiene 89:213-222. Marten GG (1986b). Indigestible phytoplankton for mosquito control. Parasitology Today 2:150-151. https://doi.org/10.1016/0169-4758(86)90184-5 Rawani A (2023). Not Sci Biol 15(1):11325 24 Marten GG, Borjas G, Cush M, Fernandez E, Reid J Honduras (1994a). Control of Larval Aedes aegypti (Diptera: Culicidae) by cyclopoid copepods in peridomestic breeding containers. Journal of Medical Entomology 31:36-44. https://doi.org/10.1093/jmedent/31.1.36 Marten GG, Bordes ES, Nguyen M (1994b). Use of cyclopoid copepods for mosquito control. Hydrobiologia 292/293:491-496. https://doi.org/10.1007/BF00229976 Marten G (2007). Larvicidal algae. Journal of American Mosquito Control Association 23:177-183. https://doi.org/10.2987/8756-971X(2007)23[177:LA]2.0.CO;2 Marten GG, Reid JW (2007a). Cyclopoid copepods. Journal of American Mosquito Control Association 23:65-92. https://doi.org/10.2987/8756-971X(2007)23[65:CC]2.0.CO;2 Marten GG, Reid JW (2007b). Cyclopoid copepods. In: Floore TG (Ed). Biorational control of mosquitoes. Bulletin No. 7. Journal of American Mosquito Control Association 23(Suppl.):65-92. https://doi.org/10.2987/8756- 971X(2007)23[65:CC]2.0.CO;2 Marten GG, Thompson G, Nguyen M, Bordes ES (1997). Copepod production and application for mosquito control. New Orleans mosquito control board, New Orleans. Matasyoh JC, Wathuta EM, Kairuki ST, Chepkorir R, Kavulani J (2008). Aloe plant extracts as alternative larvicides for mosquito control. African Journal of Biotechnology 7:912-915. https://doi.org/10.4314/AJB.V7I7.58574 Michael E, Bundy DAP, Grenfel BT (1996). Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology 122:409-428. https://doi.org/10.1017/s0031182000066646 Manual of entomological surveillance of vector-borne diseases (1988). Delhi: National Institute of Communicable Diseases. Mathayan S, Muthukrishnan J, Heleenal GA (1980). Studies on predation on mosquito larvae by the fish Macropodus cupanus. Hydrobiologica 75:255-258. https://doi.org/10.1007/BF00006490 Maurya P, Mohan L, Sharma P, Batabyal L, Srivastava CN (2007). Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae) Entomological Research 37:153- 156. https://doi.org/10.1111/j.1748-5967.2007.00105.x Maurya P, Sharma P, Mohan L, Batabyal L, Srivastava CN (2009). Evaluation of the toxicity of different phytoextracts of Ocimum basilicum against Anopheles stephensi and Culex quinquefasciatus. Journal of Asia-Pacific Entomology 12:113-115. https://doi.org/10.1016/j.aspen.2009.02.004 McInnis Jr. T and Zattau WC (1982). Experimental infection of mosquito larvae by a species of the aquatic fungus Leptolegnia. Journal of Invertebrate Pathology 39:98-104. Merritt RW, Craig DA, Walker ED, Vanderploeg HA and Wotton RS (1992). Interfacial feeding behavior and particle flow patterns of Anopheles quadrimaculatus (Diptera: Culicidae). Journal of Insect Behaviour 5:741-761. https://doi.org/10.1007/BF01047984 Menon PKB, Rajagopalan PK (1978). Control of mosquito breeding in wells by using Gambusia affinis and Aplocheilus blochii in Pondicherry town. Indian Journal of Medical Research 68:927‐933. Mietkiewski R, Van der Geest LPS (1985). Notes on entomophthoraceous fungi infecting insects in the Netherlands. Entomologische Berichten 45:190-192. Minakawa N, Futami1 K, Sonye G, Akweywa P, Kaneko S (2007). Predatory capacity of a shorefly, Ochthera chalybesceens, on malaria vectors. Malaria Journal 6(1):104-108. https://doi.org/10.1186/1475-2875-6-104 Miura T and Takahashi R (1988). A laboratory study of predation by damselfly nymphs, Enallagma civile, upon mosquito larvae, Culex tarsalis. Journal of American Mosquito Control Association 4(2):129-131. Mitchell CJ (1976). Coelomomyces psorophorae, an aquatic fungus parasitizing Aedes vexans mosquito larvae in Knox County, Nebraska. Mosquito News 36:501-505. Mohanty SS, Prakash S (2000). Laboratory evaluation of Trichophyton ajelloi, a fungal pathogen of Anopheles stephensi and Culex quinquefasciatus. Journal of American Mosquito Control Association 16:254-257. Mohan L, Sharma P, Shrivastava CN (2006). Evaluation of Solanum xanthocarpum extract as a synergist for cypermethrin against larvae of filarial vector Culex quinquefasciatus (Say). Entomology Research 36:220-225. https://doi.org/10.1111/j.1748-5967.2006.00037.x Rawani A (2023). Not Sci Biol 15(1):11325 25 Mondal RP, Ghosh A, Bandyopadhyay S, Chandra G (2014). Functional response analysis of Anisops sardea (Hemiptera: Notonectidae) against Culex quinquefasciatus in laboratory condition. Indian Journal of Medical Research 140(4):551-555. Murugesan AG, SatheshPrabu C, Selvakumar C (2009). Biolarvicidal activity of extracellular metabolites of the keratinophilic fungus Folia trichophytonmenta grophytes against larvae of Aedes aegypti– a major vector for chikungunya and dengue. Folia Microbiology 54 (3):213-216. https://doi.org/10.1007/s12223-009-0034-5. Murdoch W, Scott M, Ebsworth P (1984). Effects of the general predator, aotonecta (Hemiptera) upon a freshwater community. Journal of Animal Ecology 53(3):791-808. https://doi.org/10.2307/4660 Muspratt J (1963). Destruction of the larvae of Anopheles gambiae Giles by a Coelomomyces fungus. Bulletin of World Health Organization 29:81-86. Nadeau MP, Boisvert JL (1994). Larvicidal activity of the entomopathogenic fungus Tolypocladium cylindrosporum (Deuteromycotina: Hyphomycetes) on the mosquito Aedes triseriatus and the black fly Simulium vittatum (Diptera: Simuliidae). Journal of American Mosquito Control Association 10:487-491. Nilsson AN, Soderstrom O (1988). Larval consumption rates, interspecific predation, and local guild composition of egg over wintering Agabus (Coleoptera: Dytiscidae) species in vernal ponds. Oecologia 76:131-137. https://doi.org/10.1007/BF00379611 Nnakumusana ES (1985). Laboratory infection of mosquito larvae by entomopathogenic fungi with particular reference to Aspergillus parasiticus and its effects on fecundity and longevity of mosquitoes exposed to sporal infections in larval stages. Current Science 54:1221-1228. Nnakumusana ES (1986). Histopathological studies on the progress of infection of Leptolegnia sp (SC-1) in Anopheles gambiae larvae exposed to zoospores in the laboratory. Current Science 55 633-636. Padgett PD, Focks DA (1981). Prey stage preference of the predator, Toxorhynchites rutilus rutilus on Aedes aegypti. Mosquito News 41(1):67-70. Padua LE, Whisler HC, Gabriel BP, Zebold SL (1986). In vivo culture and life cycle of Coelomomyces stegomyiae. Journal of Invertebrate Pathology 48:284-288. https://doi.org/10.1016/0022-2011(86)90056-X Park HW, Bideshi DK, Federici BA (2010). Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus. Journal of Asian Pacific Entomology 13(3):159-168. https://doi.org/10.1016/j.aspen.2010.03.002 Peckarsky BL (1980). Predator-prey interactions between stoneflies and mayflies: behavioural observations. Ecology 61:932-943. https://doi.org/10.2307/1936762 Perez CM, Marina CF, Bond JG, Rojas JC, Valle J, Williams T (2007). Spinosad, a naturally-derived insecticide, for control of Aedes aegypti (Diptera: Culicidae): efficacy, persistence, and elicited ovipositional response. Journal of Medical Entomology 44:631-638. https://doi.org/10.1093/jmedent/44.4.631 Peterson JJ, Chapman HC, Willis OR (1969). Predation of Anopheles barberi Coquillett on first instar mosquito larvae. Mosquito News 29:134-135. Pinnock DE, Garcia R, Cubbin CM (1973). Beauveria tenella as a control agent for mosquito larvae. Journal of Invertebrate Pathology 22:143-147. https://doi.org/10.1016/0022-2011(73)90125-0 Pillai JS, Rakai I (1970). Coelomomyces macleayae Laird, a parasite of Aedes polynesiensis marks in Fiji. Journal of Medical Entomology 7:125-126. https://doi.org/10.1093/jmedent/7.1.125 Poopathi S, Tyagi BK (2004). Mosquitocidal toxins of spore forming bacteria: recent advancement. African Journal of Biotechnology 3(12):643-650. Poopathi S, Tyagi BK (2006). The challenge of mosquito control strategies from primordial to molecular approaches. Biotechnology and Molecular Biology Reviews. Popelkova I (1982). Coelomomyces from Aedes cinereus and a mosquito iridescent virus of Aedes cantans in Sweden. Journal of Invertebrate Pathology 40:148-149. https://doi.org/10.1016/0022-2011(82)90046-5 Prabhakar K, Jebanesa A (2004). Larvicidal efficacy of some cucurbitacious plant leaf extracts against Culex quinquefasciatus. Bioresource Technology 95:113-114. https://doi.org/10.1016/j.biortech.2003.05.001 Purdy W (1924). Biological investigations of California rice fields and attendant waters with reference to mosquito breeding. Public Health Bulletin 145:1-61. Rawani A (2023). Not Sci Biol 15(1):11325 26 Quiroz-Martínez H, Rodríguez-Castro A (2007). Aquatic insects as predators of predators of mosquito larvae. Journal of American Mosquito Control Association 23(sp2):110-117. https://doi.org/10.2987/8756- 971X(2007)23[110:AIAPOM]2.0.CO;2 Raghavendra K, Singh SP, Subbarao SK, Dash AP (2009). Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of Solanum nigrum Linn. Indian Journal of Medical Research 130:74-77. Rahumana AA, Gopalakrishnan G, Ghouse S, Arumugam S, Himalayan B (2000). Effect of Feronia limonia on mosquito Larvae. Fitoterapia 71:553-555. https://doi.org/10.1016/S0367-326X(00)00164-7 Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2007). Larvicidal activity of some Euphorbiaceae plant extracts aginst Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research 102:867- 873. https://doi.org/10.1007/s00436-007-0839-6 Rajendran JN, Subramanian, Velu RK (2018). Larvicidal activity of Bacillus thuringenesis isolated from Bt cotton Rhizosphere soil against Anopheles mosquito larvae (Culicidae). Asian Journal of Pharmaceutical Clinical Research 11(9):456-462. https://doi.org/10.22159/ajpcr.2018.v11i9.27814 Rajkumar S, Jebanesan A (2005). Oviposition deterrent and skin repellent activities of Solanum trilobatum leaf extract against the malarial vector Anopheles stephensi. Journal of Insect Science 5:15. https://doi.org/10.1093/jis/5.1.15 Rajkumar S, Jabansan A (2009). Larvicidal and oviposition activity of Cassia obtusifolia Linn. (Family: Legunminosae) leaf extract against malarial vector, Anopheles stephensi Listion (Diptera: Culicidae). Parasitology Research 104:337-340. https://doi.org/10.1007/s00436-008-1197-8 Raj Mohan D, Ramaswamy M (2007). Evaluation of larvicidal activity of the leaf extract of a weed plant, Ageratina adenophora, against two important species of mosquitoes, Aedes aegypti and Culex quinquefasciatus. African Journal of Biotechnology 6:631-618. Ramos HC, Ribeiro H, Novo T, Bizarro J, Easton ER (1996). First record of genus Coelomomyces in Macau (China): Coelomomyces stegomyiae var. stegomyiae parasitizing Aedes albopictus. Journal of American Mosquito Control Association 12:507-509. Ramoska WA, Watts S, Watts HA (1981). Effects of sand formulated Metarhizium anisopliae spores on larvae of three mosquito species. Mosquito News 41:725-728. Ranasinghe HAK, Amarasinghe LD (2020). Naturally occurring microbiota associated with mosquito breeding habitats and their effects on mosquito larvae. Biomed Resources International 14:4065315. https://doi.org/10.1155/2020/4065315 Ranathunge T, Abeyewickreme W, Iqbal M, Hapugoda M (2019). Use of cyclopoid copepods for control of Anopheles (Diptera: Culicidae) mosquito larvae to prevent re-emergence of malaria in Sri Lanka. Journal of Vector Borne Disease 56:200-206. https://doi.org/10.4103/0972-9062.289393 Rao DR, Thangavel C, Kabilan L, Suguna S, Mani TR, Shanmugasundaram S (1999). Larvicidal properties of the cyanobacterium Westiellopsis sp. (blue-green algae) against mosquito vectors. Transaction of Royal Society of Tropical Medicine and Hygiene 93(3):232. https://doi.org/10.1016/s0035-9203(99)90002-0 Rawani A, Haldar KM, Ghosh A, Chandra G (2009). Larvicidal activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitology Research 105:1411-1417. https://doi.org/10.1007/s00436-009-1573-z Rawani A, Ghosh A, Chandra G (2010). Mosquito larvicidal activities of Solanum nigrum L. leaf extract against Culex quinquefasciatus Say. Parasitology Research 107:1235-1240. https://doi.org/10.1007/s00436-010-1993-9 Rawani A, Banerjee A, Chandra G (2012). Mosquito larvicidal and biting deterrency activity of bud of Polianthes tuberosa plants extract against Anopheles stephensi and Culex quinquefasciatus. Asian Pacific Journal of Tropical Disease 200-204. https://doi.org/10.1016/S2222-1808(12)60046-2 Rawani A, Chowdhury N, Ghosh A, Laskar S, Chandra G (2013). Mosquito larvicidal activity of Solanum nigrum berry extracts. Indian Journal of Medical Research 137:972‐976. Rawani A, Ghosh A, Chandra G (2014). Mosquito larvicidal potential of four common medicinal plants of India. Indian Journal of Medical Research 140:102‐108. Raymond B, Johnston P, Nielsen-Leroux C, Lereclus D, Crickmore N (2010). Bacillus thuringiensis: an impotent pathogen? Trends in Microbiology 18:189-194. https://doi.org/10.1016/j.tim.2010.02.006 Rawani A (2023). Not Sci Biol 15(1):11325 27 Ravallec M, Riba G, Vey A (1989). Sensibilité d’Aedes albopictus (Dipera: Culicidae) à l’hyhomycète entomopathogène Metarhizium anisopliae. Entomophaga 34:209-217. Republican Tropical Disease Centre (2008). Evaluation of the efficacy of use of Gambusia fishes in the Anopheles breeding sites with special reference to the rice fields in Tajikistan. Annual Report on Malaria in 2007. January 2008. Ribeiro H (1992). Coelomomyces angolensis, new species (Blastocladiales: Coelomomycetaceae): A fungal parasite of the mosquito Culex guiarti (Diptera: Culicidae) from Angola. African Journal of Medical Entomology 29:30-32. Ribeiro H, Da Cunha Ramos H (2000). Coelomomyces numularius sp. nov. (Blastocladiales: Coelomomycetaceae), a new fungal parasite of Anopheles squamosus (Diptera: Culicidae) from Angola, African Journal of Medical Entomology 37:962-964. https://doi.org/10.1093/jmedent/29.1.30 Riviere RF, Thirel R (1981). Predation of the copepod Mesocyclops leuckartipilosa (Crustacea) on the larvae of Aedes (Stegomyia) aegypti and Ae. (St.) polynesiensis (Dip.: Culicidae): preliminary trials of its use as a biological control agent. Entomophaga 26:427-439. Roa EZ, I Gordon E, Montiel E, Delgado L, Berti J, Ramosi S (2002). Association of Cyclopoid copepods with the habitat of the malaria vector Anopheles aquasalis in the Peninsula of Paria, Venezuela. Journal of American Mosquito Control Association 18(l):47-51. Romi RS, Proietti S, Di Luca M, Cristofaro M (2006). Laboratory evaluation of the bioinsecticide spinosad for mosquito control. Journal of American Mosquito Control Association 22:93-96. https://doi.org/10.2987/8756- 971X(2006)22[93:LEOTBS]2.0.CO;2 Roberts DW (1974). Fungal infections of mosquitoes. In: Aubin A, Belloncik S, Bourassa JP, La Coursière E, Péllissier M (Eds). Le contrôle des moustiques/Mosquito control. Presses de l’Université du Québec. Roberts DW, Strand MA (1977). Pathogens of medically important arthropods. Bulletin of World Health Organisation 55(Suppl.1):5-8. Rodriguez-Castro VA, Quiroz-Martinez H, Solis-Rojas H, Tejada LO (2006). Mass rearing and egg release of Buenoa scimitra Bare as biocontrol of larval Culex quinquefasciatus. Journal of American Mosquito Control Association 22(1):123-125. https://doi.org/10.2987/8756-971X(2006)22[123:MRAERO]2.0.CO;2 Rodrigues AMS, Paula JE, Roblot F, Fournet A, Espíndola LS (2005). Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae. Fitoterapia 76:755-757. https://doi.org/10.1016/j.fitote.2005.08.015 Rueda LM, Patel KJ, Axtell RC (1990). Efficacy of encapsuled Lagenidium giganteum (Oomycetes: Lagenidiales) against Culex quinquefasciatus and Aedes aegypti larvae in artificial containers. Journal of American Mosquito Control Association 6:694-699. Russell MC, Qureshi A, Wilson CG, Cator LJ (2021). Size, not temperature, drives cyclopoid copepod predation of invasive mosquito larvae. PLOS One 16:e0246178. https://doi.org/10.1371/journal.pone.0246178 Sabatinelli G, Blanchy S, Majori G, Papakay M (1991). Impact of the use of larvivorous fish Poecilia reticulata on the transmission of malaria in FIR of Comoros. Annales de Parasitologie Humaine et Comparee 66(2):84‐88. https://doi.org/10.1051/parasite/199166284 Sadanandane C, Boopathi Doss PS, Jambulingam P, Zaim M (2009). Efficacy of two formulations of the bioinsecticide spinosad against Culex quinquefasciatus in India. Journal of American Mosquito Control Association 25:66-73. https://doi.org/10.2987/08-5807.1 Sadanandane C, Gunasekaran K, Boopathi Doss PS, Jambulingam P (2018). Field evaluation of the biolarvicide, spinosad 20 per cent emulsifiable concentrate in comparison to its 12 per cent suspension concentrate formulation against Culex quinquefasciatus, the vector of bancroftian filariasis in India. India Journal of Medical Research 147:32-40. https://doi.org/10.4103/ijmr.IJMR_1369_15 Saha N, Aditya G, Bal A (2007). A comparative study of predation of three aquatic heteropteran bugs on Culex quinquefasciatus larvae. Limnology 8:73-80. https://doi.org/10.1007/s10201-006-0197-6. Saha N, Kundu M, Saha GK, Aditya G (2020). Alternative prey influences the predation of mosquito larvae by three water bug species (Heteroptera: Nepidae). Limnological Review 20:173-184. https://doi.org/10.2478/limre-2020-0017. Sakthivadivel M, Daniel T (2008). Evaluation of certain insecticidal plants for the control of vector mosquitoes viz. Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Applied Entomological and Zoology 43:57- 63. https://doi.org/10.1303/aez.2008.57. Rawani A (2023). Not Sci Biol 15(1):11325 28 Saxena RC, Dixit OP, Sukumaran P (1992). Laboratory assessment of indigenous plant extracts for anti-juvenile hormone activity in Culex quinquefasciatus. Indian Journal of Medical Research 95:199-204. Scholte EJ, Knols BG, Samson RA, Takken W (2004). Entomopathogenic fungi for mosquito control: a review. Journal of Insect Science 4:19. https://doi.org/10.1093/jis/4.1.19 Sebastian A, Thu MM, Kyaw M, Sein MM (1980). The use of dragonfly nymphs in the control of Aedes aegypti. Southeast Asian Journal of Tropical Medicine Public Health 11(1):104-107. Sebastian A, Sein MM, Thu MM, Corbet PS (1990). Suppression of Aedes aegypti (Diptera: Culicidae) using augmentative release of dragonfly larvae (Odonata: Libellulidae) with community participation in Yangon, Myanmar. Bulletin of Entomological Research 80:223-232. https://doi.org/10.1017/S0007485300013468 Sempala SDK (1983). Interactions between immature Aedes africanus (Theobald) and larvae of two predatory Toxorhynchites (Diptera: Culicidae) in Zika forest, Uganda. Bulletin of Entomological Research 73:19-24. https://doi.org/10.1017/S0007485300013754 Senthil-Nathan S, Kalaivani K, Sehoon K (2006a). Effects of Dysoxylum malabaricum Bedd. (Meliaceae) extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresource Technology 97:2077- 2083. https://doi.org/10.1016/j.biortech.2005.09.034. Senthil Nathan S, Savitha G, George DK, Narmadha A, Suganya L, Chung PG (2006b). Efficacy of Melia azedarach L. extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresource Technology 97:1316- 1323. https://doi.org/10.1016/j.biortech.2005.05.019. Service MW (1977). Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: comparison between rice fields and temporary pools, identification of predators, and effects of insecticidal spraying. Journal of Medical Entomology 13:535-545. https://doi.org/10.1093/jmedent/13.4-5.535 Seye F, Faye O, Ndiaye M, Njie E, Afoutou JM (2009). Pathogenicity of the fungus, Aspergillus clavatus, isolated from the locust, Oedaleus senegalensis, against larvae of the mosquitoes Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Journal of Insect Science 9:1-7. https://doi.org/10.1673/031.009.5301 Shaalan EAS, Canyonb D, Younesc MWF, Abdel-Wahaba H, Mansoura AH (2005). A review of botanical phytochemicals with mosquitocidal potential. Environment International 31:1149-1166. https://doi.org/10.1016/j.envint.2005.03.003 Shaalan EA, Canyon DV, Reinhold M, Yones WFM, Abdel Wahab H, Mansour A (2007). A mosquito predator survey in Townsville, Australia and an assessment of Diplonychus sp. And Anisops sp. predatorial capacity against Culex annulirostris mosquito immatures. Journal of Vector Ecology 32(1):16-21. https://doi.org/10.3376/1081- 1710(2007)32[16:ampsit]2.0.co;2 Sharma VP, Ghosh A (1989). Larvivorous Fishes of Inland Ecosystems. In: Proceedings of the MRC-CICFRI Workshop; 1989 Sep 27-28; New Delhi. Sharma P, Mohan L, Srivastava CN (2006). Phytoextract-induced developmental deformities in malaria vector. Bioresource Technology 97:1599-1604. https://doi.org/10.1016/j.biortech.2005.07.024 Sheeren ME (2006). Larvicidal effects of Eucalyptus extracts on the larvae of Culex pipiens mosquito. International Journal of Agricultural Biology 8:896-897. Shin EH, Park YI, Lee HI, Lee WJ, Shin YH, Shim JC (2003). Insecticide susceptibilities of Anopheles sinensis (Diptera: Culicidae) larvae from Paju-shi, Korea. Korean Journal of Entomological Research 33:33-37. https://doi.org/10.1111/j.1748-5967.2003.tb00046.x. Silva-Filha MHNL, Romão TP, Rezende TMT, Carvalho KDS, Gouveia de Menezes HS, Alexandre do Nascimento N, … Bravo A (2021). Bacterial toxins active against mosquitoes: mode of action and resistance. Toxins (Basel) 13(8):523. https://doi.org/10.3390/toxins13080523 Singh RK, Dhiman RC, Mittal PK (2006). Mosquito larvicidal properties of Momordica charantia Linn (Family: Cucurbitaceae). Journal of Vector Borne Disease 43:88-91. Singh RK, Dhiman RC, Mittal PK (2007). Studies on mosquito larvicidal properties of Eucalyptus citriodora Hook (family-Myrtaceae). Journal of Communal Disease 39:233-236. Sivagnaname S, Kalyanasundaram M (2004). Laboratory evaluation of Methanolic extract of Atlanta monophylla (Family: Rutaceae) against immature stage of mosquitoes and non-target organisms. The Memórias do Instituto Oswaldo Cruz 99:115-118. https://doi.org/10.1590/s0074-02762004000100021 Rawani A (2023). Not Sci Biol 15(1):11325 29 Shoulkamy MA, Lucarotti CJ, El-Ktatny MST, Hassan SKM (1997). Factors affecting Coelomomyces stegomyiae infections in adult Aedes aegypti. Mycologica 89:830-836. https://doi.org/10.2307/3761103 Sigler L, Frances SP, Panter C (1987). Culicinomyces bisporalis, a new entomopathogenic hyphomycete from larvae of the mosquito Aedes kochi. Mycologia 79:493-500. https://doi.org/10.1080/00275514.1987.12025415 Sitaraman NL, Mahadevan S, Swamidas S (1976). Biological control of Anopheles stephensi larvae in wells by Poecilia reticulatus in Greater Hyderabad City, India. Journal of Communal Disease 63(10):1509-1516. Soarés Jr GG (1982). Pathogenesis of infection by the hyphomycetous fungus Tolyplcladium cylindrosporum in Aedes sierrensis and Culex tarsalis (Diptera: Culicidae). Entomophaga 27:283-300. Steinkraus DC, Kramer JP (1987). Susceptibility of sixteen species of Diptera to the fungal pathogen Entomophthora muscae (Zygomycetes: Entomophthoraceae). Mycopathology 100:55-63. https://doi.org/10.1007/BF00769569 Su X, Zou F, Guo Q, Huang J, Chen TX (2001). A report on a mosquito-killing fungus, Pythium carolinianum. Fungal Disease 7:129-133. Sulaiman S, Jeffery J (1986). The ecology of Aedes aegypti (Skuse) (Diptera: Culicidae) in a rubber estate in Malaysia. Bulletin of Entomological Research 76:553-557. https://doi.org/10.1017/S0007485300015066 Soto L, Schaper S, Angulo L, Hernandez F (1999). Costa Rica. Mesocyclops thermocyclopoides y el control biologico de aedes: ejemplo de un plan de accion communitaria en chacarita, punteras. Revista Costarrica Cienca Medical 20:45-50. Sweeney AW (1978a). The effects of temperature on the mosquito pathogenic fungus Culicinomyces. Australian Journal of Zoology 26:47-53. https://doi.org/10.1071/ZO9780047 Sweeney AW (1978b). The effects of salinity on the mosquito pathogenic fungus Culicinomyces. Australian Journal of Zoology 26:55-59. https://doi.org/10.1071/ZO9780055 Sweeney AW (1981). An undescribed species of Smittium (Trichomycetes) pathogenic to mosquito larvae in Australia. Transactions of the British Mycological Society 77:55-60. https://doi.org/10.1016/S0007-1536(81)80179-9. Syed Ali MY, Kumar SR, Beula M (2013). Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Asian Pacific Journal of Tropical Disease 3(3):196-201. https://doi.org/10.1016/S2222-1808(13)60040-7 Traboulsi AF, Taoubi K, El-Haj S, Bessiere JM, Salma R (2002). Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Management Science 58:491- 5. https://doi.org/10.1002/ps.486 Udayanga L, Ranathunge T, Iqbal MCM, Abeyewickreme W, Hapugoda M (2019). Predatory efficacy of five locally available copepods on Aedes larvae under laboratory settings: An approach towards bio-control of dengue in Sri Lanka. PLoS One 14(5):e0216140. https://doi.org/10.1371/journal.pone.0216140. Vahitha R, Venkatachalam M, Murugan Kadarkarai, Jebanesan A (2002). Larvicidal efficacy of Pavonia zeylanica L. and Acacia ferruginea D.C. against Culex quinquefasciatus Say. Bioresource Technology 82:203-204. https://doi.org/10.1016/S0960-8524(01)00175-4 Vanderplank FL (1941). Nothobranchius and Barbus sp: Indigenous antimalarial fish in East Africa. East African Medical Journal 17:431-416. Venkatesan P, Sivaraman S (1984). Changes in the functional response of instars of Diplonychus indicus Venk. & Rao (Hemiptera: Belostomatidae) in its predation of two species of mosquito larvae of varied size. Entomology 9:191- 196. Vu SN, Nguyen TY, Tran VP, Truong UN, Le QM, Le VL, … Kay BH (2005). Elimination of dengue by community programs using mesocyclops (Copepoda) against Aedes aegypti in Central Vietnam. American Journal of Tropical Medicine Hygiene 72(1):67-73. Vu SN, Yen NT, Duc HM, Tu TC, Thang VT, Le NH, ... Kay BH (2012). Community-based control of Aedes aegypti by using Mesocyclops in southern Vietnam. The American Journal of Tropical Medicine and Hygiene 86(5):850. https://doi.org/10.4269/ajtmh.2012.11-0466 Washino RK (1969). Progress in biological control of mosquitoes in vertebrate and vertebrate predators. Proceeding Paper. The 37th Annual Conference of California Mosquito Control Association 37:16-19. Rawani A (2023). Not Sci Biol 15(1):11325 30 Wattal S, Adak T, Dhiman RC, Sharma VP (1996). The biology and predatory potential of notonectid bug, Enithares indica (Fabr) against mosquito larvae. Southeast Asian Journal of Tropical Medicine and Public Health 27(3):633- 6. Weterings R, Veter KC, Umponstira C (2014). Factors Influencing the Predation Rates of Anisops Breddini (Hemiptera: Notonectidae) Feeding on Mosquito Larvae. Journal of Entomological and Acarological Research 46(3):107-111. https://doi.org/10.4081/jear.2014.4036. Whisler HC, Gabriel PB, Chanpaisaeng J, Zebold SL, Padua LE (1999). Observations on the life cycle of Coelomomyces indicus (Blastocladiales: Coelomomycetaceae) in Anopheline mosquitoes from the Philippines and Thailand. Journal of Medical Entomology 36:695-701. https://doi.org/10.1093/jmedent/36.6.695 World Health Organization (1981). Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Geneva: WHO/VBC/81.807. WHO lymphatic filariasis Fact Sheet (2017). Retrieved 2017 December 25 from: http://www.who.int/mediacentre/factsheets/fs102/en WHO Dengue (2009). Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva, Switzerland: World Health Organization, 2009. Available from: http://whqlibdoc.who.int/publications/2009/9789241547871_eng.pdf. World Malaria Report (2021). Geneva: World Health Organization. Licence: CCBY-NC-SA 3.0.1GO. Yadav R, Srivastava VK, Chandra R, Singh A (2002). Larvicidal activity of Latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. Journal of Communicable Disease 34:264-269. Yang YC, Lim MY, Lee HS (2003). Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito specie. Journal of Agricultural Food Chemistry 51:7629-7631. https://doi.org/10.1021/jf034727t Yenesew A, Derese S, Midiwo JO, Heydenreich M, Peter MJ (2003). Effect of rotenoids from the seeds of Millettia dura on larvae of Aedes aegypti. Pest Management Science 59:1159-1161. https://doi.org/10.1002/ps.740 Yu IS, Lee JH (1989). Biological control of malaria vector (Anopheles sinensis Wied.) by combined use of larvivorous fish (Aplocheilus latipes) and herbivorous hybrid (Tilapia mossambicus niloticus) in rice paddies of Korea. Korean Journal of Applied Entomology 28(4):229‐236. Zvantsov AB, Kadamov D, Fozilov H (2008). Experiences and prospects of use of larvivorous fishes for control/prevention of malaria in Tajikistan. Copenhagen (Denmark): World Health Organization, 2008. The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. License License License License ---- Articles published in Notulae Scientia BiologicaeNotulae Scientia BiologicaeNotulae Scientia BiologicaeNotulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; Licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction. Notes:Notes:Notes:Notes:  Material disclaimer: The authors are fully responsible for their work and they hold sole responsibility for the articles published in the journal.  Maps and affiliations: The publisher stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.  Responsibilities: The editors, editorial board and publisher do not assume any responsibility for the article’s contents and for the authors’ views expressed in their contributions. The statements and opinions published represent the views of the authors or persons to whom they are credited. Publication of research information does not constitute a recommendation or endorsement of products involved.